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The nature of mesons in the 0 ++ nonct is studied. In particular we discuss the param- 
ctrization of the I = 0 S wave in terms of the S* and possible e mesons. The S* param- 
c tersaredctcrmincdby fitting to~' rr +~,nd K-K + production data. In particular we 

S* - S* 2 
find (gKK/g~) : 4.0 . 0.6. 

1. Introduction 

Recent  high s tat is t ics  e x p e r i m e n t s  have provided mt tch  new i n f l m u a t i o n  on the 

0 ++ meson  m m e t .  "fhe 1 = I m e m b e r ,  8 (970) ,  is seen as a peak in tile r r r / spec t rum 

jus t  be low lhe KK th resho ld  and  also as a th reshold  e n h a n c e m e n t  in the K - K  ° spec- 

t rum (see ref. [I ] for recent  data  and references  to earl ier  observa t ions) .  The  b road  

K resonance  is seen as the rise t h rough  00 ° o f  the,  a p p r o x i m a t e l y  elastic,  I = ~- Krr S 

wave in the region of  1200 MeV 12]. The s t ruc tu re  in the rrTr S wave at the KK 

threshold  131 is a t t r i bu t ab l e  to an I = 0 S* resonance ,  alld it has been argued [41 that  

there is in add i t ion  a b road  e resonance  in the I = 0 rrTr S wave whose  mass 

(m~:  ~ 1300 MeV) is cons i s ten t  wi th  the GelI -Matm-Okt ,bo mass fo rmula  For the (5. 

K, e, S*) none t .  

In the L exc i t a t ion  quark  model  tile 0 ++ mesons  are an L = 1 honer .  Apar t  f rom 

t h e L  = 0 g r o u n d s t a t e 0  ~and  l - - n o n e t s ,  the only  o the r  n o n e l  for which  all the 

m e m b e r s  are observed is the L = 1,2 +' honer .  The  na lu re  and s y m m e t r y  proper t ies  

o f  the 0 ++ honer  are the re fore  o f  cons iderab le  i mpor t ance ,  par t icular ly  as m a n y  de- 

cay channe l s  are expe r imen ta l ly  accessible:  e, S* ---,- n'rr, KK, r/r~: 5 -" rrrL KK and 

K ---+ Krr, Kr~. The  fact tha t  b o t h  the S* and a resonance  poles occur  jus t  be low the 

KK th resho ld  increases the di f f icul ty  o f  ob t a in ing  reliable cottplings.  For  the S* 

there is the add i t iona l  com p l i ca t i on  oF the large (e) backg round .  

The main purpose  of  this paper  is to pe r fo rm a coupled  chamlel  (Trrr. KK) anal- 

y s i s o F t h e r r - - p ~ T r  r r + n a n d a "  p - + K  K ' n  data in the region o f t h e  KK th resho ld ,  

and the reby  to ob ta in  a reasonable  descr ipt iot l  o f  the S*. e effect  in the / = 0 S wave. 

The  mos t  sa t i s fac tory  p rocedure  [4] tha t  has been used to describe these over lapping  
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resonances is to parametrize tile Jost function (denoted by d ( s )  in sect. 2 below). 111 
ret. [4] this is done by writmgd(s) as the product of all S* contribution and an c 
contribt, tion (essentially model IV of our sect. 4). Such a parametrization is hard to 
interpret from the dynanlical viewpoint, and so we consider several alternatives for 
d(s )  motivated by different possible structures of the resonances and see to what ex- 
tent the data can distinguish between them. This should help illuminate the nature 
t)I" low-energy resonances. 

There is no doubt that one of the most inlportant questions of elenlentary par- 
ticle theory is whether the low-energy mesons, for exanlple, are predonrinantly qq 

conlpositcs as in the simple qt, alk model or whether some. or all, are predominantly 
meson-meson -.: qqqq states, as in the old 'bootstrap" type models, It could, of 

cot,rse, be tile case that they are 'mixed' so thal neither extreme is realistic [5]. If 
the mesons are qq states then in a many-channel model which ignores the quark 
channels they would have to be inserted as CI)D poles. This is obvious and well 
known if the quarks are real particles whose non-appearance is due to their large 
mass. If the quarks are permanently confined (as in the MIT bag model, for example 
ref. [6 I} they will never enter into an S-matrix description so their bound states 
should again appear as elementary particles, i.e. require CDD poles. However. be- 
cause we have no real understanding of confinement theories, it may be possible to 
take a contrary view here: see (;ustafson et al. I7I. 

In the work on baryon resonances by the above group [7], who explicitly calcu- 
late the left-hand cuts, it is clainled that the low-energy states are meson-baryon 
composites and that no ('DD poles are required, l-xcept for the proviso noted above, 
this appears to rule out tile possibility that those baryons are 3q states as in the sim- 
ple quark model. 

Even within a partict,lar realisation of the quark nlodel this problem is not solved. 
For instance in the MIT bag model of mesons, in addition to the qq states there are 
qqqq states with similar masses and indeed the suggestion has been made [8] that 
the 0 ~ mesons considered in this note are of such a type. 

It is worth noting that tile same problem occurs in the study of tile pomeron. In 
one scheme [9] tile non-planar diagrams {the cylinder, etc. ¢~t" tile topological ex- 
pansion )simply renormalise the t" upwards to make a ponleron, whereas in the other 
(generally referred to as the Harari-Freund scheme, also a property of the dual model) 
the cylinder itself has a new singt, larity so that in addition to the (qq) f, etc. there 
is a (qqqq) pomeron. 

The plan of this paper is as follows. In sect. 2 we brietly recall the analytic struc- 
lure of tile S matrix ill the two-channel sitt, ation and in sect. 3 we consider the pa- 
rametrization of tile ~ resonance. In sect. 4 we study the nlore interesting case of 
the description of tile I = 0 S wave in the region o[" tile KK threshold. We consider 
three palametrizations which appear to arise naturally in: (I) a model with ~, rrrr 
state (e) and a KK state (S*) together with a COL, piing between them, (11) a model 
with a rrrr state (e) and a qq state (S*) with m~ significant force in the KK channel, 
and (111) a mt)del with no significant forces in tile rm" and KK channels and two 
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states (e, S*) in tile qq channels.  In a sense that will be made explicit in sect. 5 tile 
results of  the analysis of  tile data appear to rule out III and to favour II over !. 

In sect. 5 we describe the coupled channel  (rrTr, KK) analysis of  tile 7r--p ~ rr-rr ~ n 
and rr p --'- K - K + n  in tile region of  the Kf( threshold. We analyse tile data in terms 
of  S, P, I) partial waves of  ttle produced di-meson system. We study various param- 
etr izations of  the I = 0 S wave, including those ment ioned  above, and determine tile 
S* resonance parameters.  In particular,  the (sheet II) resonal~ce pole is found to be 
well de termined and independent  of ttle parametr izat ion of  tile S wave. A discussion 
of the results is given in sect. 6, together with comments  on the status of  SU(3) for 
tile 0 ++ none t  and our conclusions.  

2. The S-matrix 

Consider a two-channel  si tuation,  for example 7rTr and KK, and denote  the thresh- 
olds as s I = 4m{ and s2 = 4m~, with channel  momenta  k i = ~(s • .?i)1/2. The elements  
of  the S matrix,  Sq, have right-hand cuts in the s plane starting at s I and s 2. As we 
are only interested in the S wave we omit the subscript 1 from S. We refer to tile 
physical sheet as sheet 1; tile physical ampli tudes are evaluated on tile tipper side of  
the right-hand cuts on this sheet. We can define sheets 11,111 and IV by con t inu ing  
analytically through tile cuts as shown in fig. I, where, for clarity, we have shown 
tile cuts displaccd just  below tile real axis. Sheets I, 11, III, IV correspond to (hn  k l ,  

Im k2) = ++, - + . -  , +- , respectively. 
A convenient  way to guarantee tile singularity structure and uni tar i ty  properties 

of S is to introduce [101 a real analytic funct ion d(s) ~ d(k l ,  k2) with square root 
branch points at kl = 0 arid k2 = 0. Then Jr'we put 

- d U ( s ) - d (  k l ' k 2 )  ( I )  

SI!  dl(s) d ( k l , k 2 )  

d l V ( s ) - d ( k l "  k2) (2) 

S2z dl(s) d (k l ,  k2) " 

dill(s) d( k l ,  ' k2 )  
S, ,$22--  S]2 = ~ ) -  = ~ d ~ - ~  ~-;)- ' (3) 

we find that S has tile correct analytic s tructure and is uni tary * in tile physical re- 
gion. This method is easily generalised to many channels [10]. Tile poles of  the S 

matrix are caused by the zeros ofd l ( s )  = d(s). 
We will use tile mul t ichannel  N over D method and write tile S-wave ampli tude 

T = N D  ! 

'~ This requires also that '=d( kl ,k2)l  ~< id(kl,k2);. 
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Fig. I. The sheets reached from the physical sheet, sheet I, by continuing through the right- 
hand cuts. The cuts are displaced just below real axis for clarity. 

where N has the left-hand cuts and D the r ight-hand cuts. We normalise T so that 

hn  T = T * p T ,  

Pil : O(s s i )k i~ i]  , 

hence 

Im D . . . .  p N .  

(4) 

(5) 

(6) 

The real analytic funct ion d(s), in t roduced above, can be taken to be det D ( s ) .  On 
the physical sheet d ( s )  does not  have the left-hand cuts of  S. 

3. T h e  0 r e s o n a n c e  

We first apply this formalism to the simple case of a single two-channel  resonance: 
the I = 1 S-wave 6 resonance in the 7rr/and KK, channels.  We consider the parametri- 
zation of this resonance supposing it to be (a) a meson-meson slate (we call this ex- 
change model *) and (b) a qq state (tile quark model).  

(a)  E x c h a n g e  m o d e l .  In this model we assume that the rrr7 and KK exchange 
forces are responsible for the (5 meson. In particular, suppose that forces in the KK 
channel  are predominant ly  responsible for the 3, then we may parametrize D22 by a 
linear funct ion o f s  and the other elements by constants.  We add the threshold terms 
multiplied by constants .  This approximat ion gives 

I 1C A -. i B k  i " 
D = (7) 

- i D k  2 s R s i E k  2 

in the resonance region, where A, B, C, D, E and s R are real parameters. The corre- 
sponding N is given by 

I0 ,~~ I 
N : | l ,  (8) 

k D /=.'j 

* This is not an ideal name but we follow (;ustafson et al. [7] who, like us, were unable to 
think of a better one. 
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and the synlmetry  condi t ion  T)2 : T21 requires 

k.'C. D = 0 ,  B = 

We therefore obtain 

d ( s ) =  d e t D  = m  2 

with 

?712 = S R A C  , 

(~,)) 

s im  1") im 1" 2 . (10) 

m l ' !  = l'.C2k i • mI '2 =/'-'/,'2 - ( I ) 

This form o l d ( s )  is tile two-channel  Breit-Wigner fornlvla.  

Note that the form o f d ( s )  would )lot be different  if we put tile 'u t lcoupled '  6 m 

the rrr, chatme] rather than in KK channel ,  l lowever,  if  we tried a linear form i)l both 

D i l  arid D22 (;is ill tm)del [ for the S*. 6 ill tile )lext section),  the I'll v,,'olild require 

s~ l or SR2 to be large, so thai d( s )  would reduce essentially * to form o t e q .  (10). 

This is beca/,se tile data indicate lhere is no S-wave "backglound" ~t) the/5 resonance. 

(be) Quark  m o d e l .  In this model  we assume that lhe meson-meson forces are weak 

except  via the quark channel .  MM -~ qq ~ MM. In this case we have 

['1 0 A -  i l i a ) - ]  
i I 

D = I O  I C iDk2 • ( 1 2 )  

i 
k/:' /'" s j <  s J 

where tile e lements  in the third row arc real, since we are interested in a region well 

below tile qq threshold. It is s t raightforward It) S]lt')w lhat d(.',') = det D is once :,gain 

o f  tile form o f e q .  (10). 

Thus we see that the two models for the 15 are indistinguishable alld both lead to 
the Breil-Wigner ft)rmula 

_ mgigi  

g/-diT " ( ) 

where d( s )  is given by eq. (IO) and I" i = ki~ 2. This expression for Tii has poles on 

sheel 111 and on sheet II (or sheel IV). We cat) get an idea about  the locat ion o f  the 

poles if  we ignore the s dependence  t)f the 1"i. Of  cot, rse. this is not a reasonable ap- 

prt)ximation when the poles occur  near l]lres]lold alld so ill practice wc must st)lye 

exact ly.  H(.)wever for tile purpose ()fdiscussio)) we take 1" i = 1:" i = I'i(nz). Then tile 
pole nearest the physical region on sheet 111 is a( 

s = m 2 .- ira(J" I + i" 2 ) , (14) 

* The amplitudes arc tlnchao,ecd ifd(s) is multiplied by a rc:.iI con:<t:.,nt. 
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and that on sheet II (or, if r 2 > 1-' 1, sheet IV) is at 

s = m 2 im(Pl V2) - ( 1 5) 

There are also the more distant complex conjt,gate poles. When the resonance oc- 
curs well above both thresholds only the sheet 111 pole is important. Ilowever the 
resonance occurs just below the KK threshold and the 'nearby'  sheet I1 pole is 
manifest in the rtr~ mass spectrum. 

The rrr/mass spectrum has been fitted [1 ] by this two-channel Breit-Wigner t'or- 
mula with the coupling constant ratio 2 2 _ 2 The g n , J g K K  fixed at the SU(3) value of ~. 
parameters of the 8 were found to be 

m = 974 -+_ 9 MeV, 1',~ = 72 -+ 51 MeV. (16) 

These values give a K°K mass spectrum which is in good agreement with the data, 
when allowance is made for incoherent background effects [1 I- 

Hattd [11 ] has shown several other Breit-Wigner fits to these zrr~ and K°K - mass 
spectra and concludes that the data can be fitted ahnost :.s well by larger partial 
widths, [~rm ~ 300 MeV. I-yen with large partial widths the sheet 11 pole can occur 
close to the real axis. llowever, the fall-off of the 8 contribution to the KK mass 
spectrum is a crucial indicator of the sheet 111 pole position. Although the statistics 
are low, the K°K -- spectruln [1] above 1060 MeV suggests that the sheet Ill pole 
is closer to the real axis than is permitted by Flattd [1 I ]. 

For completeness we mention an alternative description of a resonance occurring 
just below the second threshold, which is based on a constant inverse K-matrix and 
which has been frequently discussed in the literature [12]. In our notation this pa- 
ralnetrization is 

[ a - -  i k l  7 

D = / ,  (17) 
~ 7 fl - ik2 ; 

and therefore N is the unit matrix. For/3 small and negative this leads to a sheet II 
pole just below the (second) KK threshold (k 2 = ilk2l) at 

Ik2[ = - 13 + T2/(Ct " i k l ) .  ( 1 8 )  

This pole manifests itself as a resonance in channel 1, which may be called a KK 
bound state resonance. It is easy to show that such a resonance is effectively de- 
scribed by two of the parameters, the third being associated with a background con- 
tribution. There is no nearby sheet [I1 pole in this parametrization and so the reso- 
nant amplitude T 12 dies away more slowly (~ l /k2)  than in the Breit-Wigner descrip- 
tion in contradiction with the indications of the data. 

4.  P a r a m e t r i z a t i o n  o f  the  S*  and 

Like tile 8, tile S* resonance occurs just below the KK~ threshold and the sheet 11 
pole is manifest in the structure of the nrr spectrum. However in this case the de- 
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scription is compl ica ted  by tile presence o t a  large, possibly resonant (e), background 

in the 1 = 0 S wave. We discuss possible parametr izat ions  o f  this partial wave in the 

rrTr, KK channels in the region o f  the KK threshold * 

(1) Exchange model.  In this model  we assume that the ampli tudes are domina ted  

by forces in the an  and KK channels,  together  with a coupling between them. We 

parametrise the diagonal e lements  o f  D by linear funct ions o f  s and the off-diagonal 

e lements  by constants .  We add the appropr ia te  threshold terms mult ipl ied by arbi- 

trary constants .  Thus, 

[~ - s - -  iT~k~ A ---iBk~ 

D -- , , (19) 
iDk 2 s)~ s iTek2J 

which corresponds to an Ng iven  by 

N =  "rzj " 

We calculate T = N D  - j  and impose the condi t ion  that TI2 = T21. This yields 

B = D ,  C = [71A -- B(se -- SR)]/72 . (21) 

Thus,  for det D we have the 6-parameter  form 

d ( s ) = d e t D  = ( s  c-  s -  i y l k t ) ( S R -  S -  i72k2) 

I 
. . . .  (A i B k l ) ( y l A  - B(s e s" R) -- i T z B k z ) ,  (22) 

72 

In the limit in which the rrzr -+ KK coupl ing is ignored this model  permits  a reso- 

nance in 7rrr and one in KK. The former,  which we identify with the e, gives the 

background to the S* state in the Kg, channel .  
(H) Mixed  model, l lere we permit  an e background in the rrzr state as '+efore, but  

we do not include any forces in the 7rrr -+ KK or K~( --, KK ampli tudes.  Instead we 

include a qq channel in which there is a bound state. Thus 

f s e -- s i y l k l  0 A iBkl  1 

D =  O 1 C .  iDk2 ', ,." (23) 

[/.." F s 3 . s  J 

We have ignored the threshold terms in the q[t channel since we assume that these 

are sufficiently distant not  to affect the results. 

* Here we neglect tile K+K- and KOK 0 mass difference. When detailed threshold mass spectra 
are available, il will be interesting to study this effect. 
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When we impose Ti2 = T21 we find 

B = 0 ,  D = -  ~ / 1 A F / E .  

We can therefore write 

(24) 

d(s)  =- det D = (s e - s - t '7~kl)(s R s - /3 '2k2)  A E ,  (25) 

which has five effective parameters (so, sa  (--s3 - CF), 71,3'2 ( -3 ' t  A F 2 / E ) ,  A E ) .  

We see that this mOdel is identical to model i except that it has the additional 
restriction that B of  model 1 is zero. 

(I11) Quark  m o d e l  Here we ignore all forces in the meson channels and we treat 
the nzr + q~ coupling to lowest significant order. It is convenient to include two q~ 
channels (e.g. a 1 and 8_ of  SU(3)) and parametrize each as a linear function ofs .  
Thus we put 

I I 0 A + iBk  l 

0 1 E + iP7% 

D =  
1 J s 3 s 

I K  L X 

w e  

C + iDk  ~ l 

G + iHk2 

Y 

S 4 - -  S 

do not go beyond second order off-diagonal terms, we obtain 

(26) 

Provided 

d(s)  -~ det D = (s 2 + as + b + i k l ( c  + ds)  + i k2 (e  t f~))  , (27) 

where a, b, c, d, e, f a r e  six real constants. Although they both have six parameters, 
(27) and (22) are different, in particular (27) does not allow any term of  the form 
( i k l ) ( i k 2 ) .  

In sect. 5 we analyse r r -p -~  rr -Tr+n, KK.n data in an a t tempt  to distinguish be- 
tween the above parametrizations. We also compare with the description obtained 
by the following parametrizations used in earlier analyses [4,13,14]. 

(IV) Brei t -Wigner  and background .  In our notat ion this description means that 
the S matrix is given by eqs. (1)- (3) with the factorizing form [4] 

d(s)  = dR( s )dB( s )  , (28) 

where d R is a two-channel Breit-Wigner form for the S* resonance, 

dR(s )  = SR -- S --- i % k  I i3"2k 2 , (29) 

and d B is the background to the resonance. We take 

d B ( s )  = e - i k l 0 B  , (30) 

that is we assume a background phase, 8B ----kl~B, only in the rrTr channel. The de- 
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tails of the fit are found to be independent of  the parametrization of¢5i~ provided it 
approximates O0 ° in the S* region. We choose to paramelrize 8~ in terms of  a broad 
rrrr resonance. 

( V )  Constant  inverse K matr ix .  In this desc,iption the S matrix is calct, lated using 

d ( s ) = ( a  - i k l ) (~ - -  i k 2 ) -  y 2 ,  (31) 

see eq. (17), where a,/3, 3' are the elements of  the K --I or M matrix and :,re real. If 
~,/3, 3' are taken to be constant we can get :, 3-parameter description of  a resonance 
and background. For example,  

+ ik~ ] 

where K u is the value of  Ik2[ given in eq. (18). This expression for S II is in the form 
of resonance (sheet I I pole) multiplied by background, where ,5 l~ ~ 90° provided 
loci < < k l .  

5. Analysis of data in the S* region 

In order to study the properties of  the S* we performed a coupled channel anal- 
ysis by fitting rrrr and KK production amplitudes direct to rr--p --+ rr-rr+n and 
r r  p --+ K K+n data. For each reaction we describe the observed moments (Y~),  
with J ~< 2, M ~ 1, of the produced di-meson system in terms of S, P and D waves. 

For r r -p  -+ 7r--rr* n we used the t-channel moments obtained by the CERN- 
Munich collaboration [ 15 ] (see fig. 2). We fitted to data (with t < O. 15 GeV 2) in 
20 MeV bins through the range 0.8 < M,~,~ < 1.2 GeV using the 'Ochs-Wagner' meth- 
od I 1(~,17]. That is. the rrN -~ nrrN amplitudes,  Lx, ,  for producing a rrrr system of  
spin L, helicity X by + exchange nalurali ty,  are assumed to satisfy (i) ILl+l = ,L I I, 
(ii) Lx~ = 0 for X > 1, (iii) L i - / L o  = x/-/,77J + 1 )/C where C is real. We parametrized 
C as a quadratic function of  M,rrr. The observed moments,  with ,I ~ 2, are then ex- 
pressed in terms of L 0, with L = 0, 1,2,  and C(M~Tr). 

For 7r-p -~ K - K + n  we used the/-channel  moments obtained at 6 GeV/c by the 
Argonne EMS group [18] ( - t  < 0 . 0 8  GeV 2) and at 18.4 GeV/c by the CERN- 
Munich collaboration [ 19] ( t < 0.2 GeV2). The exchange mechanisms are more 
complicated in this reaction and to study the MR~ , dependence it is desirable to 
consider data extrapolated to the 7r exchange polc. Such a cross-section extrapola- 
tion has been done by the CERN-Munich grot, p 1191 and so we have normalized all 
the observed moments to these values. The moments obtained in this way are shown 
in fig. 3, and are analysed in terms of  amplitudes by the 'Ochs-Wagner' method for 
MKR < 1.15 GeV. 

The observable an and KK moments are expressed [15 17] in terms of  the pro- 
duct ionampl i t t ,  desLo(nn ) a n d L o ( n - n  +-+K K +) fo rL  =0 ,  1,2,  which, in tu rn ,  
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I 
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2'5 +~ (-t < 045Gev 2) 
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Fig. 2. The mass spectra of  the unnormalized t channel n~r momen t s  in the region 
0.8 < Mnl r < 1.2 GeV. The data were obtained in the CERN-Munich 17.2 GeV/c r r -p  -* n - r r+n  
expc r imen t [  15] and correspond to - t  < 0.15 GeV 2. The curves arc the fit t,sing model I. 

are given in terms of  tile S, P, D coupled channel  (Trrr, KK) partial wave ampli tudes.  
We investigated the 1 = 0 S wave parametrizat ions discussed in sect. 4 by fitting to 
the data keeping the other partial waves fixed, l-:or the I = 2 rrrr S wave we input  the 

values of  S~- used in ref. []71 ( tbr  example 6~ = 22.4 ° at Mrr,r = 1 GeV). For the P 
and  D w a v e s  * we  u s e d  19 a n d  f r e s o n a n t  [ 'orms w i t h  the  re la t ive  rcrr/KK co t l p l i ngs  

f i xed  at  t he i r  S U ( 3 )  va lues .  

T h e  c u r v e s  on  figs. 2 a n d  3 c o r r e s p o n d  tt) t he  bes t  fit t o b t a i n e d  u s i n g  the  m o d e l  

I p a r a m e t r i z a t i o n ,  eq .  ( 22 ) .  T h e  p a r a m e t e r s  o b t a i n e d  are 

s R = 0 . 9 4  + 0 . 0 8 ,  72 = 0 . 9 4  _+ 0 .03  , 

sc 1-4 +-~'.~ 71 = 9+ i0 

A = 0 . 2 2  + 0 . 4 2 ,  B = 0.06 -+ 0 . 5 5 ,  (33) 

* The small contr ibut ion to rrTr production from the g resonance tail was also included. 
? "Io allow for the excess of  7rrr, as compared to KK, product ion data, we reduced the contribu- 

tion to x 2 from the fit to the rrrr data by a factor o f  4. 
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~ction to the n exchange pole (see fig. 6 and ref. [ 19]). All the other moments shown arc nor- 
realized to these (non-evasive) extrapolated values. The curves correspond to the fit of model I 
(the dotted line for < yl> is obtained if the o phase is input). The dashed line for < yO> is the fit 
using the constant K matrix, model V. 

in units o f  GeV. There are systematic  discrepancies in the descript ion o f  some of  the 

nn  monlents  which may be due to using fixed Breit-Wigner forms to describe the 

tails of  the p and f resonances. S imi la r sys temat i c  misfits in this region were also 

found [161 in the CERN-Munich phase-shift analysis based on resonance parame- 

trizations. It is interest ing to note  that i f  the fit is compared  to prel iminary Argonne 

4 and 6 GeV/c  n - p  ---* n r t+n data [20] that these discrepancies are reduced *. In 

the fit we al lowed the P wave phase he(Trn -+ KK) to be free. We found that it was 

in agreement  with that predicted by the tail o f  the p resonance just above the KK 

threshold,  but  by MKR = 1.I needed to be some 30 ° larger, lfSp(Trrr--* KK) is as- 

sumed to be given by the p tail, and the o ther  parameters  left unchanged,  then the 

do t ted  curve is obta ined for < Y~) for KK product ion ,  see fig. 3. 

The values o f  four of  the six parameters  o f  model  I, eq. (33), are poor ly  deter- 

* In particular the ANL data show evidence for the structure indicated for ( y02> at the KK. 
threshold. 
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IV give essentially the same amplitudes. The dashed line corresponds to model V. The unmarked 
points for rtlr ~ KK. correspond to MKg " = 1.02, 1.0375, 1.075 GeV respectively. 

mined and suggest that the 1 = 0 S wave is over-parametrized,  s E is badly determined 

because 3'1 is large and the parameters  are strongly correlated.  As expec ted  from the 

values o r B  in eq. (33), model  11, which has this B = 0, gives essentially the same fit. 

Moreover model  IV, eq. (28), with four effect ive parameters s R = m(S*)  2, 3'1 = g ~ , ,  

3'2 =g~:R and 613 * also gives an essentially identical fit, with 

re(S*) = 0.978 -+ 0.005 , 3'1 = 0.199 +- 0 . 0 1 4 ,  

,SB(I GeV) = 86.5 ° , 3'2 = 0.792 +- 0 . 0 9 9 ,  (34) 

in units o f  GeV. 

That  such different  parametr izat ions are likely to lead to similar fits can be de- 

monst ra ted  as follows. Since the background phase, 6B, in model  IV is approximate-  

ly 90 ° we have 

d ( s )  ~- - - i ( k l ) ( s  R - s - i3"lkl  - i3'2k2). (35) 

The in t roduct ion  of  the slowly varying factor (k l )  is irrelevant to the fit, but  is re- 

quired by unitar i ty.  On the o ther  hand for model  II the values of  the parameters  are 

such that 

d ( s )  ~ - i 3 " l k t ( s R  -- s i7 '2k2) C '  . (36) 

* In practice ~5 B was parametrized in terms of a broad elastic nrr resonance. The best values were 
re(e) = 1.1,gErm = 3.7 with very large, strongly correlated errors. 
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Fable 1 
The S* pole posit ions and couplings 

Model Sheet II pole (GeV) Sheet 11I pole (GeV) 

1 Exchange 0.997 -- i 0.017 0.837 i 0.148 
(-+0.002~ (~ 0.002) (-+0.013) (, 0.008) 

II Mixed 0.996 i 0.017 0.835 i 0 . ]46  
(~ 0.002) (, 0.001 ) ( :0 .008)  (_,:0.005) 

IV Breit-Wigner 0.996 - i i ) . 016  0.876 i 0.077 
(, .0.003) (-+0.002) (,+0.010) ~,+0.008) 

V Constant 0.988 - i 0 . 0 1 2  
K -  l matr ix  (_+0.(103) (._0.002) 

(,~S* . S*,2 
KK/grrn] 
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Fig. 5. The n - n *  mass distr ibution observed in K - p  -* rr z '*(A, Z O) in the S* region with the 
background and p resonance events subtracted [21 ]. The cont inuous  curve corresponds to the 
prediction for model I (II, IV) and the dashed curve to that for model V. The curves are propor- 
tional to k I M~rrr I TI 212 and are unnormalized.  
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To the extent  that k I is constant over the region of  interest, the parametrizations 
, , ,  2 , can be seen to be equivalent: 72 = 3'2,71 = C / k 1 7 1 .  

We find that model II1, eq. (27), is ruled out by the data since it is unable to re- 
produce the necessary background in the rrrr channel. Also the constant inverse K 
matrix, model V, is unable to give a satisfactory fit to the data. The best fit, using 
eq. (31 ), has 

o~= 0 .095 ,  ~3= 0 .045 ,  3' = 0.163 (37) 

in units of  GeV, but leads to the behaviour of(Y~o) for KK production shown by the 
dashed line in t]g. 3. There is only a nearby sheet I1 pole, and the absence of  a near- 
by sheet !II pole does not allow (Y~0) to decrease rapidly enough with increasing 

MKR [4,141. 
The 1 = 0 S wave amplitudes obtained in the fits are shown in the Argand plots 

of  fig. 4. There is no ambiguity in the sign of the S wave amplitude Tl2 since the 
interference with the resonance tail contributions is compatible with the KK produc- 

s* s* tion data provided gKR/gnTr is positive [4]. In table 1 we show the S* pole positions 
corresponding to the various parametrizations. We notice that the sheet 11 pole posi- 
tion is very stable to changes of  the parametrization. We also give the ratio of the S* 
coupling to the two channels, det]ned as I T 2 2 / T l t i  at the sheet !I pole position. 

The S* is also evident in the an spectrum observed in the reaction 
K - p ~ rr-rr+(A, Z °) [21 ]. The data, with the po tail subtracted [211, are shown in 
fig. 5 together with our predictions for the shape of the spectrum. 

6. Discussion and conclusion 

We have proposed a form of parametrization ot ttte coupled channel (nn ,  KK) 
1 = 0 S wave which allows for the presence of overlapping S* and c resonances and 
which permits an investigation of the nature of these mesons. We found that mod- 
el III, which we called the quark model, is not able to fit the n+n - and K+K - pro- 
duction data. This does not mean, of  course, that the S* and c are not predominant- 
ly q~ states, but it does mean that such a description is not simple and that forces 
in the meson sector are also important.  There has to be a significant admixture of  
meson-meson (qq~lq) states in the wave functions. Of course it is not obvious that 
this makes these resonances any different from the better known ones such as the ,o, 
since, for example, the observed coupling of  the ,o to nlr inevitably mixes a ( q q ~ )  
component  into its wave function. However, the necessity for such a component  has 
not previously been required experimentally.  

Models I and I! give satisfactory fits to the data. In the fit with model I a partic- 
ular parameter turns out to be essentially zero, a fact which is predicted by model II. 
This gives some evidence in support of  model !1. However this evidence is very weak 
as indicated by the errors in (33). The fact that an equivalent fit can be obtained 
with the four effective parameters of model IV indicates that the S wave is over-pa- 
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to the ~r"n ~ K K cross secnon. The curve corresponds to the model i (II, IV) parametriza- 
tion. 

r amet r i zed  in mode ls  I and  Ii. Since four  S wave pa rame te r s  suffice to descr ibe  the  

s t ruc tu re  o f  the data  in the S* region ( th ree  of  which  are associated wi th  tile S*) we 

are unab le  to d e t e r m i n e  mean ingfu l  pa rame te r s  for the c. 
Recen t  r r - p  0 o --* K s K s n  data  [22] ,  wh ich  con ta in  on ly  even-L n n  --* KI< part ial  

waves, show evidence  for a large S wave unde r  the f resonance .  A deta i led  s tudy  o f  

this  e f fec t  will require  a part ial  wave analysis o f  da ta  e x t r a p o l a t e d  to the n exchange  

pole. O f  the recent  e x p e r i m e n t s ,  the on ly  e x t r a p o l a t e d  values presen t ly  avai lable are 

those  given in the upper  par t  o f  fig. 6, wh ich  shows the n + n  " ~ K+K - cross sec t ion  

ob t a ined  by the C E R N - M u n i c h  co l l abo ra t i on  [19] by  e x t r a p o l a t i o n  o f  the i r  

n - p  --* K - K + n  data .  We pe r fo rmed  an S, P, D wave analysis  o f  the K ' K -  m o m e n t s  

[19] for - t  < 0.2 G eV  z and  ca lcu la ted  the S wave c o n t r i b u t i o n  * to the cross sec- 

o o • We show the solution with the larger ISI as required by a study of the KsK S production data 
1221. 
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tion. The results are shown in the lower part of fig. 6. The curve corresponds to the 
model I (!I, IV) S wave parametrization. The data indicate that there exists st)me 
additional S wave effect for Mt<g ~> 1.2 GeV. 

If the large S wave under the f resonance is associated with the c then it is at 
variance with ot, r expectations for SU(3) for the 0 ++ nonet. The SU(3) couplings 
tbr the decay of the 0 ++ mesons into two pseudoscalars are given in terms o f g l , g 8  
and 0 s, the e - S* mixing angle, in ref. [4]. Note that we define r i = kg~ whereas 
in ref. [41 Pi is essentially 2k/g~. Using the 8 width to determine * gs, and using the 
S* couplings found above, we obtain 

g 8 = 0 . 7 6 - + 0 . 2 ,  g ~ = 1 . 1 7 - + 0 . 2 ,  (~s=68°_+15 ° .  

The e - S* mixing in the 0 ++ nonet is far from ideal [4]. If we use the above values, 
then SU(3) predicts a broad e resonance in the 7rrr channel with a very small coupling 
to the KK channel. 

Cerrada et al. [231 have recently discussed nrr and KK. scattering in the S* region 
using a different parametrization. They claim that they do not require any nearby 
resonances, l lowever it is clear that they do not fit the nn-+ KK. cross section near 
threshold as shown in our fig. 6 (compare r /o f  their fig. 1). These data are crucial 
in determining the S* parameters. The claim, that the KK ~ KK. left-hand cut is im- 
portant,  is incorrect since it does not contribute to either Ti i or ITi212. In fact this 
can be seen explicitly using their parametrization: putting "/ab --- 0 in their eq. (8) is 
found not to affect the results in the S* region. 

In summary, we have determined the properties of the S* resonance using n+n - 
and K 4 K-- production data below 1.2 GeV, but are unable to say much about the 
possible e state in this mass region. The behaviour of the KK production data just 
above threshold are invaluable in determining the S* parameters. Similarly the 
(KK) + spectra will be crucial for studying the 8. We note that recent KK. production 
experiments are finding interesting S wave structure in the region of  the f resonance. 
The high statistics data [24] on the line-reversed reactions n - p  ~ K -K+n and 
n+n '+ K - K + p  will be invaluable for investigating exchange mechanisms, S* - 8 in- 
terference and for establishing whether the S wave structure under the f is associated 
with the n n  ~ KK channel. 

It is a pleasure to thank Drs. P. Estabrooks, D. Morgan, M.R. Pennington, J.L. 
Petersen and T. Shimada for helpful discussions, and for their interest in this work, 
and to thank Drs. N.M. Cason, E. Lorenz, A.J. Pawlicki and A.B. Wicklund for com- 
municating and discussing the results of  their experiments prior to publication. One 
of  us (E.N.O.) thanks the Turkish Government for financial support.  

_ 1  The  value o f g  8 is cons t r a ined  to be c o m p a t i b l e  [4] w i t h  the behav iou r  of  the Krr I - ~. S wave 

phase.  
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We perform an amplitude analysis of 10 GeV/c n-p ~ K-K~p data as a function of K-K ° mass from threshold up to 2 
GeV. We find that the A 2 and g resonances are produced dominantly by natural and unnatural parity exchange, respectively 
and we determine their resonance parameters. We present further evidence for the I = 1,4 + state A~(1900), in particular by 
isolating interference effects. The structure of S-wave K-K ° production suggests an I = 1, 0 + state just below 1300 MeV of 
width about 250 MeV. 

The high statistics data for the reaction zr-p 
-+ K - K 0 p  allow a study of the meson spectrum that 
is more selective than that for K+K - production. The 
K - K  0 channel has isospin 1 and is thus only accessible 
to even spin states of odd G-parity (such as the 6(0+), 
A2(2+)) and to odd spin states of even G-parity (such 
as the g(3-) ) .  The data that are available on K-Ks0 
production therefore complement the information 

0 0 available + 1 from the high statistics K+K - ,  KsK S, 
n+n - and nOn 0 production data. 

The even and odd G-parity K - K  0 states are pro- 
duced by different exchange mechanisms. The al- 
lowed natural and unnatural parity exchanges (denoted 
by NPE and UPE) are shown in table 1. From studies 
of the SU(3)-related reactions KN -+ (KTr)N we expect 
isoscalar NPE (pomeron, f, and co exchange) and iso- 
vector UPE to be dominant [3]. The possibility of 
pomeron exchange (P) means that at high energies 
even-L K - K  0 states should be more copiously pro- 
duced than those with odd L. 

Here we analyse the 10 GeV/c n - p  -+ K - K 0 p  data 

1 Present address: CERN, Geneva, Switzerland. 
+1 Recent reviews are given, for example, by Petersen [ 1] and 

Cohen [ 2]. 

Table 1 
Allowed exchanges for spin-/. K-K ° t~roduction. 

L even L odd 

NPE P, f, O w, A 2 
UPE B, Z a) lr, A1 

a) Z is used to denote the possible 2-- exchange trajectory. 

obtained using the University of Geneva two-arm spec- 
trometer [4]. We use the moments Re (YjM), of the K -  
angular distribution in the t-channel K - K  0 helicity 
frame in 50 MeV intervals over the mass range 1 
< M ( K - K  0) < 2 GeV, integrated over the t interval 
0.07 < - t  < 1 (GeV/c) 2. Only the J ~ 8, M ~< 2 mo- 
ments are found to be significantly different from 
zero ,2 ,  and these are determined by the constrained 
linear fit described in the preceding letter [5]. The re- 
sulting mass spectra are shown in fig. 1. These may be 
compared with the moments,  shown in ref. [5], ob- 
tained from the same data by a maximum likelihood 

,2 In the mass region of the A2 resonance there is evidence 
for a small, but non-zero, (Y34> signal; we discuss the impli- 
cation of this below. 

417 
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method, but integrated over a somewhat smaller t in- 
terval. 

The moments can be expressed [6] as the sum of 
bilinear products of  amplitudes, Lx+, describing, to 
leading order in the energy, the production of  a K - K  0 
system of spin L, helicity X by NPE and UPE, respec- 
tively. In temls of  the helicity amplitudes H L x, we 
have Lx_+ - [HLx +- (-1)X+IHL,_X]/X/~-for X 4= 0; 
andL 0 =HLo, that is only UPE for X = 0. We will use 
the abbreviated notation L+ - L  1+_" A summation over 
helicity flip and non-flip at the nucleon vertex is im- 
plicit in each bilinear product, that is ILl 2 = [Lf[ 2 
+ [Lnf 12. The interference terms can be written in the 
form 

Re(L'L*) = IL'I ' ILI(~ cos (~)L'L, 

where ~ is the degree of  nucleon spin coherence (0 
~< ~ ~< 1) and 4~ is the relative phase between amplitudes 
L and L' .  We note that the observed moments do not 
contain interference terms between NPE and UPE am- 

t 
plitudes. That is, terms of  the form Re(Lx,+Lx_ ) do 
not occur. 

The number of  observed moments is insufficient to 
determine the magnitudes and phases of  all the ampli- 
tudes Lx+. Fortunately, for a given L, not all (t-chan- 
nel) helicity components are important. The study of  
the t structure in the A 2 and g resonance regions [7] 
(as well as the amplitude structure in the SU(3)-related 
reactions [3] K-+p ~ (Kn)+-p) shows that the domi- 
nant NPE amplitudes are L+, and that UPE proceeds 
mainly via L 0. This can also be inferred directly from 
the observed t-channel moments as a function of  mass 
(fig. 1); we see that the (yO'2) moments are, in general, 
larger than those with M = 1. 

For other related dimeson production processes 
(such as 7r+Tr - [8],  K-Tr + [9],  K+K - [10],  K07r + [3],  
R07r - [3] ), it is found that the t-channel moments 
with M > 2 are compatible with zero, indicating that 
the amplitudes with X ~> 2 can be neglected. However, 
for 7r-p -+ ( K - K 0 ) p  in the A 2 mass region a definite 
signal is found [7] in the (Y43) t-channel moment. Owing 
to the dominance of D+ in this mass region, this signal 
can be attributed toD+D2+ interference. In fact an 
amplitude analysis [7] of  A 2 production as a function 
of  t shows that [D2+[ ~ 0.1 ID+I, on an average over 
the relevant t range. We therefore conclude that the 
L'+L*2+ interference terms will, in general, contribute 
to the M = 1 moments at least as strongly as the L~L*_ 

interference terms. The data are unable to determine 
both L andL2+.  However, these small amplitudes 
only contribute quadratically to the M = 0 and 2 mo- 
ments and so it should be reliable to use these mo- 
ments to determine the more dominant L 0 and L+ am- 
plitudes. 

For these reasons we use the M = 0 and 2 t-channel 
moments with J--.< 8 (fig. 1) to determine the magni- 
tudes and relative phases of  the amplitudes in the NPE 
sector (P+, D+, F+, G+) and in the UPE sector 
(So, P0, DO, F0, GO) as a function of  the produced 
K - K  0 mass in the range 1 < M <  2 GeV. For example, 
for each mass bin above 1.8 GeV, where amplitudes 
up to L = 4 are required, we use 16 moments to deter- 
mine 9 amplitude magnitudes and 7 relative phases. In 
principle, this assumes that, within each sector, the 
amplitudes have a common coherence factor ~. There 
is no certainty that this is correct. However, in prac- 
tice, at a given mass, often only one interference term 
is important within each sector, and then the data give 
a reliable determination of  the corresponding spin- 
phase coherence ,3 ~ cos q~. For example, in the A 2 
mass region the data determine ~ cos 4~ for SoD 0 and 
P+D+ interference. 

Even then the amplitude determination is not unique 
The data determine only (cos ¢)LL', and not the rela- 
tive phases 4)LL', and so there remain discrete ambigui- 
ties. At each K - K  0 mass M we obtain all possible solu- 
tions by using a similar technique to that proposed by 
Gersten [11] and Barrelet [12] .  We write the ampli- 
tudes, describing 7r-p-~ K - K 0 p  by UPE and NPE, in 
the form 

.2 

A(UPE) = a(M) I-I (z - zi), 
i=1 

.2 -1  

A(NPE) = a'(M) sin q~ sin 0 I-I (z - z ) ,  
i=1 

with z = cos 0, where 0 and q~ are the angles specifying 
the direction of  the K -  in the (t-channel) K - K  0 rest 
frame./2 is the maximum value of  L included in the 
partial wave decomposition of  A(UPE) and A(NPE) 
into the L 0 and L+ amplitudes, respectively. The 
"Barrelet" zeros, zi(M) and z}(M) are complex. The 
ambiguities arise because the data do not determine 

,3 The value represents the spin-phase coherence averaged 
over the t interval of the data, 0.07 < - t <  1 (GeV/c) 2. 
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Fig. 3. Same as fig. 2, but for UPE K - K  0 product ion.  

1 2 1 Z, 16 1B 2 0 
M~, (GeV) 

Fig. 2. The (t-channel) amplitudes describing K-K ° produc- 
tion by NPE obtained by analysing the moments of fig. 1. 
Representative errors are shown. The curves through the 
L ~> 2 amplitudes correspond to the Breit-Wigner resonant 
fits of table 2. Only the coherences between significant ampli- 
tudes are shown. 

the signs of  Im z i or Im z~. Thus there is a 2./2-fold am- 
biguity within the UPE sector and a 2 ~ - l - f o l d  ambi- 
guity with the NPE sector. From a given solution we 
generate the other solutions by first determining the 
z i ( z )  and then making substitutions z i ~ z i 

(z~ -+ z}*) for the various combinations of  the zeros. 
We find that the amplitude GO, describingL = 4 

K - K  0 production by UPE, is compatible with zero. 
This can be anticipated by inspection of  the J = 8, 
M = 0, 2 moments.  In the results presented below we 
have therefore set G O ~ 0. For K - K  0 masses below 
1.7 GeV we fix G÷ to be given by the tail of a spin 4 
resonance and fit only moments with J ~< 7. For 
K - K  0 masses below 1.5 GeV we fix the L = 3 ampli- 

tudes, F 0 and F+, to be given by the tail of the g reso- 
nance and fit only moments  with J ~< 5. The resonance 
forms are normalized to fit the amplitude determina- 
tions in the higher mass bins. 

We tabulate all the allowed solutions in each mass 
bin. In the majority of mass bins these solutions give 
an essentially exact description of the data. In all but  
the mass bin about 1.325 GeV (see the data fluctua- 
tions in fig. 1) and those above 1.85 GeV the fits have 
an acceptable X 2. In figs. 2 and 3 we present the solu- 
tion that is selected at each mass by requiring 

(i) the dominance o f S  0 just above the K - K  0 
threshold. (P0 and higher waves are suppressed by fac- 
tors of  (qK~)L),  

(ii) the continuity of Im z i and lm z~ as a function 
of  the K - K  0 mass, 

(iii) amplitude behaviour consistent with the pres- 
ence of the A 2 and g resonances. 
Leading resonant waves are essentially unchanged in 
magnitude by Barrelet transformations and the third 
criterion is mainly helpful off resonance. The first two 
criteria eliminate an alternative solution with PO simi- 
lar in magnitude and structure to that shown for S O 
below 1,4 GeV (see fig. 3) and with S O smaller and 
structureless. 

From the results, we see that the A 2 resonance is 
dominantly produced by NPE, whereas g resonance 
production proceeds mainly by UPE. This is consistent 
with the exchanze expectations of table 1. The curves 
shown through the A 2 and g amplitudes correspond 
to Brei t-Wigner fits and lead to the resonance produc- 
tion cross sections given in table 2. 
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Table 2 
A 2 and g resonance parameters and cross sections a). 
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Quantity fitted Mass interval Mass Width o b) 
fitted (MeV) (MeV) (~b) 
(GeV) 

A 2 Mass spectrum 1.0-2.0 1316 ± 1 104 + 2 5.00 ± 0.04 
ID+I 2 1.15-1.45 1318 -+ 1 113 ± 4 4.62 ± 0.06 
IDol 2 0.20 -+ 0.06 

g Mass spectrum 1.0-2.0 1697 +- 4 177 ± 11 0.93 + 0.06 
IF+I 2 0.08 -+ 0.03 
IFo12 1.50-1.95 1698 + 12 199 + 40 0.51 ± 0.06 

a) All errors are statistical only. The systematic error of the mass scale is 4 MeV (st. dev.) and the uncertainty of the cross-section 
normalization 8%. The interaction radius in the centrifugal barrier factor of the Breit-Wigner shape is taken to be R = 3.5 GeV -1 . 

b) o is the production cross section times the branching ratio for decay into K°K -,  corrected for the unseen K ° decays. The cross 
section is calculated in the t interval 0.07 < - t  < 1.0 (GeV/c) 2, and mass interval 1.2 < M < 1.4 GeV and 1.55 < M < 1.85 GeV 
for the A2 and g, respectively. 

Above 1.8 GeV we see the emergence o f L  = 4 

K - K  0 product ion .  Unfor tuna te ly ,  the data do not  al- 

low reliable partial-wave analysis above 2 GeV so as to 

establish a resonance shape for G+. However ,  suppor t  

for resonance ident i f icat ion comes f rom the behaviour 

o f  the D+G+ in terference cont r ibut ion .  This is the 

dominan t  interference term in this mass range and, 

moreover ,  both  L = 2 and L = 4 K - K  0 states have sim- 

ilar p roduc t ion  mechanisms.  The behaviour  of  

(~ cos c~)D+G + should therefore  reproduce cos (6 2 - 64),  

where ~L are t h e 1 =  1 KK phases. Assuming 6 2 is giv- 

en by the tail o f  the A2, we see that  the behaviour o f  

~cos 4, as a funct ion  o f  mass, gives fur ther  confirma- 

tion o f  the spin 4 resonance o f m a s s M  ~ 1.9 GeV re- 

por ted  in the preceding le t ter  [5] .  

Ano the r  new and surprising feature o f  the results is 

the impor tance  o f  S-wave K - K  0 p roduc t ion  in the A 2 

mass region. The 0 ++ states are an outs tanding prob- 

lem in meson spect roscopy,  and this result has crucial 

implicat ions.  It is true that  lower  partial waves are, in 

general, less constra ined than leading waves, and more-  
over that  S O is domina ted  by D+. However ,  another  
place where such structure should manifes t  i tself  is in 

0 0 K+K - and K s K  s product ion .  There the p rob lem is 
no t  the dominance  o f  NPE, but  the separat ion o f  

I = 0 and I = 1 KK effects.  We recall that  the S-wave 
spectrum obta ined  f rom K+K - and K0K 0 produc t ion  

data [10,13] do in fact show, besides the S* threshold 

enhancement ,  a significant bump at 1.3 GeV. This 

bump was originally a t t r ibuted  to a state in the I = 1 

Kg. channel [13] ,  but  a more  recent  analysis [2] fa- 

vours an 1 =  0 assignment. However ,  the present  analy- 

sis shows a clear S-wave structure just  be low 1300 MeV 

in the 1 =  1 KK channel.  Such in format ion  on the 

K - K  0 channel  will be invaluable in separating I = 0 
0 0 and 1=  1 effects  in K + K -  and K s K s p roduc t ion  data. 
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We present the results and the analysis of a high-statistics experiment to study A 2 and 
g production in the reaction rr-p -+ K-K~p at 10 GeV/c. In each resonance region we per- 
form a moment analysis of the data, and from the moments we determine the production 
amplitudes as a function of t. We find A 2 production proceeds dominantly by natural- 
parity (pomeron and t') exchange. We compare A 2 and diffractive K*(1420) production. 
We find g production proceeds by n and co exchange; we determine the g-+ KK branching 
ratio. 

1. Introduction 

We study the reaction rr-p -+ K - K ~ p  at 10 GeV/c using the University of 

Geneva two-arm spectrometer [ 1]. We collected 40 000 such events. We determine 
the moments of the K -  angular distribution, and from these the production ampli- 
tudes, as a flmction of t, in the A 2 and in the g resonance regions. The information 

we obtain for n - p  -+ A2p is complementary to that obtained for the reactions 
K-+p -+ K*(1420)-+p by the same apparatus at the same energy [2,3]. A study of 
this set of diffractive processes is invaluable in determining properties of pomeron 
exchange and in attempts to unravel the pomeron- and f-exchange contributions. 
Recent studies can be found elsewhere [4,5]. On the other hand, g production is 
non-diffractive and proceeds via rr and co exchange. We shall see that the difference 
between A 2 and g production is strikingly evident in the data, and in the structure 
of the underlying amplitudes. The prominence of n exchange in g production 
allows the determination of the product of the nrr and KK branching ratios of the 
g resonance. 

* Present address: CERN, Geneva, Switzerland. 
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The organization of  the paper is as follows. In sect. 2 we present the moments 
as a function of t, firstly, in the A2 mass region, and, secondly, in the g mass region. 
The allowed exchanges for A2 and g production are given in sect. 3, together with 
the definition of  the amplitudes we use to describe n - p  ~ K - K ° p  production. 
Sect. 4 describes the determination of  the amplitudes in the A2 mass region; and 
in sect. 5 we compare A2 and K*(1420) production and discuss the implications 
for pomeron and f exchange. In sect. 6 we perform the amplitude analysis in the 
g resonance region; this is complicated by the presence of  non-negligible L = 
4 K - K  ° production [6,7]. In sect. 7 we study the interference between the 
resonant L = 3 and L = 2,4 natural parity exchange (NPE) amplitudes in the g 
mass region. We find that g production by NPE is consistent with co-exchange 
expectations, and we estimate the g -+ KK branching ratio by relating the co-ex- 
change contributions for g and p production. In sect. 8 we study the n-exchange 
contribution to g production. We extrapolate to the n exchange pole and calculate 
the g -+ KK branching ratio. We summarize our results in sect. 9. 

2. Data selection and moment analysis in the A2 and g regions 

We have measured the reaction n - p  -~ K ° K - p  with a seen K ° ~ n+n - decay 
using the University of  Geneva two-arm spectrometer. The apparatus consisted of: 

(i) a beam spectrometer to measure direction, momentum, and mass of  the 
incident particle; 

(ii) a proton arm at large angle (38 ° to 70 ° in the laboratory), to measure 
direction and momentum of slow recoil protons in the range of  momentum trans- 
fer 0.07 < t < 1.0 ( G e V / c )  2, using multiwire proportional chambers (MWPCs) 
(6 planes) and a high-precision time-of-flight system; 

(iii) a forward arm, consisting of MWPCs (8 planes), to record the directions of  
forward emitted charged particles within a large solid angle (0.3 sr). There is no 
magnetic momentum analysis. 
A detailed description of the spectrometer can be found in ref. [1]. 

Channel identification is done first by requiring a second vertex at least 30 mm 
downstream from thenp  vertex to select the K ° -~ n+n - candidates. Events of  the 
correct topology are then processed by a kinematical 2C-fit, and accepted if 
P(X 2) > 5%. Finally we require MK- p > 1.9 GeV to eliminate Y* contributions 
and their kinematical reflections at high K~K-  mass. 

The quality of  the data sample can be checked by estimating the background 
under the unfitted K ° mass peak, or independently, by inspecting the shape of  
the P(X 2) distribution. In both cases, we find a background of  4%. 

Fig. 1 shows the K~K-  mass spectrum of the final sample of  40 000 events, 
and illustrates the dominance of  A 2 and g production in this mass region. The 
sensitivity of the data, corrected for unseen K ° decays, is 

N / a ( n - p  -+ K ° K - p )  = 7670 -+ 600 weighted events//ab. 
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Fig. 1. K ~ K -  effective-mass spectrum, for 0.07 ~< Itl ~< 1.0 (GeV/c) 2. The spec t rum is shown 
before (histogram) and after (points with error bars) acceptance correction. A cons tant  factor 
of  5.8 due to the azimuthal  aperture of  the proton detector  is no t  included in the correction. 

Our cross-section normalization is in very good agreement with other A 2 -+ K°K - 
production data [8]. 

We have calculated the moments of the angular distribution of the K-  in the 
t-channel helicity frame of the K°K - system. We have corrected for geometrical 
acceptance of the spectrometer, efficiencies, and absorption and decay of incident 
and outgoing particles, using the linear method described in ref. [1]. Fig. 2 shows 
the unnormalized moments N(Y M) in the A2 mass region (1.2 < M <  1.4 GeV) as 
a function of t, as obtained by fitting the terms J ~< 4 and M ~ 4. The normaliza- 
tion of the spherical harmonics is such that (Y~o) = 1. 

Fig. 3 shows the momenta in the g mass region (1.55 < M  < 1.85 GeV), result- 
ing from a fit of the terms J ~< 8 and M ~< 2. 

3. Amplitudes and allowed exchanges in n - p  -~ K-K0p 

To extract the 7r-p ~ K-K~p amplitudes from the experimental moments it is 
convenient to use combinations of helicity amplitudes with definite asymptotic 
exchange naturality. The moments can be expressed [9] as the sum of bilinear 
products of these amplitudes Lx+, where Lx_+ describe, to leading order in the 
energy, the production of a K-K~ system of spin L, helicity X by natural and 
unnatural parity exchange, respectively. In terms of the helicity amplitudes, HLX, 
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Fig. 3. As for fig. 2, but in the g-mass region 1.55 < M(K-K 0) < 1.85 GeV. 

we have 

L~,+_=-,f~[HL~,+-( l)~'+l HL,_~.I , • : # 0 ,  

L o  - H L  0 , 

That  is only  UPE occurs for h = 0. We will use the abbreviated no ta t ion  L+_ -LI+. 

(1) 
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The ampli tudes are normalized so that their  modul i  squared give the con t r ibu t ion  

to do~dr, that is 

do  = iSol 2 + iPol z + ip+l 2 + . . . .  (2) 
dt 
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A summation over helicity flip and non-flip at the nucleon vertex is implicit in each 
bilinear product,  that is 

ILl 2 = ILf[ 2 + [Lnf[ 2 . 

The interference terms can be rewritten in the form 

Re(L'L*) = IL'[ILI(~ cos ~))L'L , (3) 

where ~ is the degree of nucleon spin coherence (0 ~< ~ ~< 1) and ~b is the relative 
phase between amplitudes L and L' .  We note that the expressions for the observed 
moments  do not contain interference terms between NPE and UPE amplitudes. 

The observed moments,  (yM) of  figs. 2 and 3, show immediately that the pro- 
duction mechanisms are different in the A2 and g mass regions. In the spin-2 A2 
mass region we observe strong negative (Y~4) and (I"2) moments,  whereas in the 
spin-3 g mass region we have a positive signal in ( Y~6 ) and a weaker negative signal 
in (Y~). Retaining only the )~ ~< 1, spin-L resonant amplitudes, these moments  are 

(Y~2r) = C11Lol 2 - C2(IL_I 2 + IL+I2), 

(Y~L) = C3(IL_I 2 - IL+I2), 

where Ci are positive known coefficients. This implies that A2 production is domin- 
ated by NPE (D+), whereas g production proceeds mainly via UPE (Fo), and to a 
lesser extent via NPE (F÷). We also notice from the J = 8 moments  that the L = 4 
NPE amplitude (G+) cannot be neglected in the g-resonance region. 

The difference between g and A2 production is due to the restrictions of  
G-parity at the meson vertex. For the production of a K - K  ° system of spin L the 
allowed exchanges are given in table 1. 

From a study of  the SU(3)-related reactions K-+p -+ K*-+p we expect isoscalar 
NPE and isovector UPE to be dominant. The pomeron (IP), co, and f exchanges 
contribute dominantly to overall single helicity-flip amplitudes, which vanish as 
x / C 7  in the forward direction. For UPE, 7r and B couple to overall helicity-flip 
amplitudes, whereas A 1 and Z quantum number exchange couple to overall non- 
flip amplitudes. Z is used to denote the possible 2 - -  exchange-degenerate partner 
of  the A 1. The n-exchange pole is extremely close to the physical region so zt 

Table 1 
A1Jowed exchanges in ~r-p --, K - K 0 p  for the product ion of  a spin-L K - K  ° system 

L even L odd 
(e.g. A2) (e.g. g) 

NPE IP, f, 0 to, A 2 

UPE B(Z) n(A 1) 
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domiantes A 1 exchange in the forward scattering region. The relative strength of 
the amplitudes with the quantum numbers of B and Z exchange are not so well 
known. There is evidence [10,11] from related reactions to suggest that non-flip 
Z exchange is larger for - t  ~< 0.2 GeV 2, while B exchange dominates for - t  ~> 0.2 
GeV 2. 

The effects manifest in the data indicate that A2 production proceeds domi- 
nantly by pomeron and f exchange, and that g production is due to 7r, and to a 
lesser extent co, exchange. 

4. Amplitude analysis in the A2 mass region 

The t-structure of the observed K - K  ° t-channel moments in the A2 mass 
region, 1.2 < M < 1.4 GeV, is shown in fig. 2. The explicit relations between the 
moments and the production amplitudes L+, Lo and L_ are given in table 2. The 
five largest moments (Y~4,2,0), (Y],2) shown the dominance of the NPE amplitude 
D÷, and indicate that all other amplitudes will be much less reliably determined. 
The non-zero (Y3) moment is attributable to interference of D+ with the helicity- 
two NPE amplitude D2+. The structure of (Y~3 '2) can be accounted for by P+D+ 
interference and shows no evidence for a PoDo effect. The UPE amplitudes are 
much harder to isolate. The moments (Y~) and (Y~), taken together with (Y43), 
imply small DoD_ interference, but a larger So D_  contribution. There is no 
evidence of either a Po or P_ effect, except possibly Solo  interference in the 
first t bin of (Y~l). 

As a result of these observations, we performed an amplitude analysis of the 
J ~< 4, M~< 4 moments in the A2 mass region in terms of the magnitudes and 
coherences of the NPE amplitudes D÷, D2+, P÷, and of the UPE amplitudes Do, D_,  
So. Neglect of Po and P_ means the moments (Y~,I) are not included in the analysis, 
and as (Y~) is also compatible with zero we do not determine the P÷D2+ coherence. 
Moreover, the data cannot determine reliably the individual coherences in the weak 
UPE sector. We therefore assume nucleon spin-coherence and, motivated by n-B ex- 
change degeneracy, (cos ~)DoD - = --1. 

The results are shown in fig. 4. We see the expected dominance of the NPE apli- 
tude D+. The clear (Y43) signal is described by a D2+ contribution of approximately 
10% the magnitude of D+. The suppression of the UPE D-wave amplitudes (associ- 
ated with B and Z exchange) is to be compared with their relatively stronger 1r-ex- 
change structure in K±p -~ K*(1420)-*p (see fig. 4 of ref. [2]). 

We may compare the values of IDol of fig. 4 with those obtained from charge- 
exchange (CEX) A ° production. Data are available for n+n ~ A°p at 4 GeV/c [12], 
and for n - p  -~ A°n at 12 and 15 GeV/e [ 13]. We interpolated the measured t-chan- 
nel partial cross sections P~o da/dt using the form ._2-2a PL with a(t) = -0 .2  + 0.8 t. 
To convert to [Dol 2 we included a 4.7% A2 -~ KK branching ratio [14], we multi- 
plied by ½ due to isospin, and corrected to a 1.2 < M < 1.4 GeV mass interval. The 
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Table 2 
The unnormalized moments  x / ~ - N  ( Y f )  in terms of the amplitudes L O, L _ ,  and L+, defined 
in the text a) 
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We use the abbreviated notation LL'  ~ Re(L*L').  A summation over helicity flip and non-flip 
at the nucleon vertex is implicit in each bilinear product,  that is Re(L *L') = Re(L~L} + LnfL'nf). 

a) These coefficients have been checked with those calculated by W. M~inner. We thank him for 
providing a table for comparison. 
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Fig. 4. The 10 GeV/c 7r-p -~ K-K0p amplitudes in the A 2 mass region, 1.2 < M(K-K 0) < 1.4 
GeV. The curve for ID01 shows the prediction obtained from CEX A 0 production. The coher- 
ences of SD o and - S D _  are assumed equal, and are denoted by SD. The SD and D+D2+ 
coherences are not well determined and the curves only indicate the trend of the results. 

values obtained for IDo] at PL = 10 GeV/c are indicated by the dashed line in fig. 4. 
The agreement between iDol obtained from CEX and non-CEX reactions means 
that there is no evidence for isoscalar UPE in n - p  ~ A~-p. 

An interesting feature of our analysis is the importance of S-wave K - K  ° produc- 
tion in the A2 mass region (see fig. 4). In general, it is difficult to extract lower 
partial waves, and to study the reliability of this determination of So we repeated 
the analysis with Po included, together with P_ - - 0 . 5  Po, but with So omitted. 
The description of the moments was again reasonable, though not quite as good as 
that with So included and Po omitted. Essentially the only change in the amplitude 
components shown in fig. 4 is that ISol --' IPol and, of course, no S D  interference. 
The same ambiguity was present in the analysis of the moments as a function of 
the K K ° mass [7]. There we argued, from the expected dominance of So (rather 
than Po) jus t  above threshold and from the continuity of the solution as a function 
of mass, that the solution with the large S o in the A2 region was favoured. There 
are other indicators that this is the physical solution. Firstly, by comparing n and co 
exchange for Kp ~ K*(890)p, and by comparing the P-wave background in the g 
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region (see below), there are indications that IPol ~< IP÷I. Secondly, by comparing 
0 0 

K + K  - and KsK s production data [15] (in particular the equality of  the (Y~) mo- 
ments) it has been noted that the P-wave n-exchange amplitude is small in our mass 
range. Quantitatively we find this Po ~cannot account for the required UPE contribu- 
tion needed in K - K  ° production. For these reasons we favour the K - K  ° amplitude 
solution with the relatively large S O and a small Po contribution. Even if the two 
most forward points shown for IS01 are overestimated, owing to the omission of  a 
possible Po contribution which peaks at small t (n exchange) and to large accept- 
ance corrections, the t structure still implies a strong non-flip component  (Z ex- 
change) in So at small t. The analysis of  the data as a function of  the produced 
K - K  ° mass showed an S-wave enhancement in this mass range [7]. This coincided 

0 0 with the bump previously seen in K+K - and KsK s production [15] and sugggsts 
that it should be attributed partly to I = 1, and not solely to 1 = 0, S-wave KK pro- 
duction. The importance of  the non-flip exchange component for 1= 1 S-wave pro- 
duction considerably complicates the extraction of  nTr -+ KK partial waves from 
KK production data, particularly the determination of  the I = 0 S-wave. 

5. The relation between A 2 and K*(1420) diffractive production 

A 2 production by NPE in the process n - p  ~ A~-p proceeds via pomeron and f 
exchange. We may write the dominant amplitude 

D+(A2) = IP + f .  (4) 

This contribution to the differential cross section for A 2 production, [D+(A2)[ 2, is 
shown in fig. 5. It is obtained from D + ( K - K  °) of  fig. 4 after correcting for (i) the 
unseen A2 decay modes (using an A2 ~ Kg, branching ratio of  4.7%), and (ii) for the 
finite mass interval (1 .2 -1 .4  GeV) using an A2 Breit-Wigner form. 

This may be compared with K*(1420) production isolated from the related 
K-+p --> K°n+-p reactions. High-statistics data for these latter processes have been 
taken, with the same spectrometer, at the same beam energy. These data were ana- 
lysed [2] to determine the K°n + production amplitudes in the mass region 1.34 < 
M < 1.5 GeV and K*(1420) production was also found to proceed dominantly via 

the NPE amplitudes D+(K* +-). The differential cross sections for K*(1420) produc- 
tion, or more precisely ID+ 12, are also plotted in fig. 5, after correction for the un- 
seen * K*(1420) decay modes and for the finite mass bin. The crossover at - t  = 0.3 
(GeV/c) 2 has been interpreted in terms of  the pomeron-, f- and c~-exchange contri- 
butions [3]: 

D+(K* +) = 3'/P +/3(f ¥ ¢o), 

where the coefficients 3' and j3 are introduced since we have used h ~ and f to denote 

* We include a factor of 3 to allow for K* --+ K-+n 0 and use a K* ~ K~r branching ratio of 56.1%. 
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Fig. 5. The NPE cross sections ID+I 2, for Tr-p--* A2p and K+-p ~ K*(1420)-+p at 10 GeV/c. 
The cross sections are corrected for the unseen decay modes and for the tails of the Breit- 
Wigner distributions outside the fitted mass intervals. This latter correction is a factor 1.23 
and 1.27 for the A 2 and K*(1420) mass intervals, respectively. The ratio R is discussed in 
sect. 5. 

the exchange cont r ibut ions  for A2 product ion ,  see eq. (4). 
Here we wish to compare pomeron  and f exchange in A2 and K*(1420)  produc- 

t ion. Before confront ing  the data, it is informative to anticipate values of  the coeffi- 
cients 7 and/3. F rom SU(3) invariance and magic f, f '  mixing we expect/3 = 1. To 
est imate the relative coupling 7 of  the pomeron ,  we may use the f, f '  domina ted  
pomeron  hypothesis  [16].  According to this scheme [4,5] 

3' = ½(1 + r ) ,  with r ( t ) -  ap - af  , (6) 
Otp - -  O~f' 

where ~i ( t )  a r e  the usual trajectory functions.  In the symmetry  l imit  r = 1 and the 
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pomeron is an SU(3) singlet. The departure of  r from 1 represents the effect of  
SU(3) mass breaking. 

To facilitate the comparison of  A2 and K*(1420) production we plot,  in fig. 5, 
the ratio 

[o(K* +) + o ( K * - ) ]  1/2 
R -  L - ' ( 7 )  

versus t, where we have used the differential cross sections, o - do/dt  ID+ [2, shown 
in the upper part of  the figure. We have used the sum of  K *+ and K* - cross sections 
to remove the interference contributions between the even (IP, f) and odd (co) G- 
parity exchanges. If we assume Icol 2 is small compared to I/P + f l  2, then R is an 
indicator of  the relative strength of  the pomeron and f contributions. If the pro- 
cesses are dominated by pomeron exchange than we expect  R "~ 1 + r, whereas if f 
exchange is dominant we expect R ~ 1. 

From fig. 5 we see that R = 1.25 -+ 0.03 for - t  < 0.4 (GeV/c) 2. Assuming that 
r(t) ~-- 0.5 at - t  = 0.2 (GeV/c) 2, and that the relative pomeron-f  phase is 60 °, this 
value of  R implies that the pomeron relative to f-exchange contr ibut ion is 1:1 in 
n - p  -+ A2p ,  and is 1.5 : 1 in Kp -+ K*(1420)p at 10 GeV/c. 

Before closing this section it is appropriate to comment  on the observed P+D+ 

coherence in the A2 region ( c f  Fig. 4). This gives information on the behaviour 
of  the relative phase ~PD = 6 D + 0D (~ e 0 p, where 0 and ~5 are the appropriate 
K - K  ° product ion and decay phases, respectively. If we assume that the produc- 
tion phases 0p and 0D are in accordance with Regge expectations this would give 
information on 8p in the A2 region. However, the P+D+ coherence observed for 
the related K*(1420) reactions indicated anonralous behaviour for 0p in the 
K*(1420) -+ region; see, in particular, fig. 12 of ref. [3] *. We therefore cannot 
obtain a reliable estimate of  8 e. 

6. Ampli tude analysis in the g resonance region 

The t structure of  the moments of the K - K  ° angular distribution in the g mass 

region, 1.55 < M < 1.85 GeV, is shown in fig. 3. Clearly the data do not allow a 
full amplitude determination (cf. table 2). We use the t-channel moments  < yjM) 
with J ~< 8, M = 0, 2 to determine the magnitudes and coherences of  the NPE 
amplitudes L+, and of  the UPE amplitudes L o, with L ~< 4. We are led to this 
simplification by the results in the A2 mass region. From the A2 analysis we 

¢ 

expect that L+L2+ interference terms will contribute to the M = 1 moments at 
least as strongly as LoL'_ interference terms. The data are unable to determine 

* Here 0p denotes the P-wave K-K 0 production phase; it corresponds to the phase of tile odd- 
signatured K* production amplitude of fig. 12c of ref. [ 3 ]. 
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both L_ and L2+. However, these small amplitudes only contribute quadratically 
to the M = 0, 2 moments and so it should be reliable to use these moments to 
determine the more dominant Lo and L+ amplitudes. 

As mentioned before, the J = 6, M =  0 and 2 moments show that g resonance 
production proceeds mainly by UPE (F0) , and to a much lesser extent  by NPE (F+). 
The dominance of  the (Y42) and (Y~) moments,  as compared with the other M = 2 
moments,  indicates a very strong D+ component  in the g region. Moreover, the J = 8 
moments suggests that L = 4 K - K  ° production by NPE exchange (G+) must be 
included in this mass interval. The presence of  sizeable D+ and G+ amplitudes make 
the determination of  [F+[ very difficult. The difficulty is apparent from the expres- 
sion for the J =  6, M =  2 moment:  

(Y~) = -0 .431 IF+[ 2 - 0.258]G+[ z - 0.844 Re(D+G~).  

The "background" waves, D+ and G+, are associated with pomeron exchange and 
are therefore enhanced relative to the (co-exchange) resonant amplitude F+. On the 
other hand, since P+, D+, and G+ are expected to be nucleon spin coherent, the 
data give valuable information on the relative phases of  these amplitudes. 

There is no evidence for the L = 4 UPE amplitude Go, either from fig. 3 or from 
the monrents as a function of  the produced K - K  ° mass [7]. This is in agreement 
with the exchange expectations of  table 1. We therefore set G o = 0, and for J ) 7 
include only moments with M = 2 in the analysis * 

In each t interval we use the J ~ 8, M = 0, 2 moments to determine the magni- 
tudes and relative phases of  the amplitudes within the NPE sector (P+, D+, F+, G+) 
and within the UPE sector (S 0, Po, Do, F0). For each t interval all the solutions are 
enumerated using the Barrelet zero technique [17] and the solution selected to cor- 
respond with that obtained as a function of  mass in the g region [7]. The ambiguity 
is essentially only in the lower partial waves; in particular for the S, P, and Do ampli- 
tudes. We note also that the analysis assumes, within each sector, that the amplitudes 
have a common coherence factor ~. Within the UPE sector there is no reason why 
this should be correct and so only the dominant UPE coherence, ~ cos ~b, may be 
meaningful. F o is the dominant UPE amplitude and the other UPE quantities are 
much less reliably determined. To sum up, we note that the analysis should be 
reliable and unambiguous for (D+, F+, G+) and F o. 

The results for the g production amplitudes and the background D- and G-waves, 
together with their respective coherences, are shown in fig. 6. The lower partial 
waves are, in general, not so well determined and depend on the Barrelet solution 
that is selected [7]. For our solution the magnitudes of S o, Po, P+ are approximately 
1.0, 0.6, 0.7 v ~ / G e V ,  respectively, at - t  = 0.15 (GeV/c) 2, and 0.3, 0.1, 0.2 
x / ~ / G e V  at - t  = 0.5 (GeV/c) 2. The coherence o f S o F  0 is positive for all t, that 
o f P o F  o is ~ 0.4 for - t  < 0.3 (GeV/c) 2 and that of  P+D+ is negative for all t. 

Tile data for the (y2) moment were smoothed at - t  = 0.13, 0.38, and 0.45 (GeV/c) 2. 
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Tt-p~K-K°p AMPLITUDES IN THE g REGION 
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Fig. 6. The 10 GeV/c Tr-p -~ K-KOp amplitudes in the g mass region, 1.55 < M ( K - K  O) < 
1.85 GeV, obtained from the data of fig. 3. The extreme fluctuations seen in the 3 < J ~< 5 
moments  at - t  = 0.29 (GeV/c) 2 were removed before amplitude analysis. Only representative 

errors are shown for IDol and the DoF 0 coherence. 

The difference of odd-L and even-L K - K  ° production mechanisms is strikingly 
evident in fig. 6. For UPE, the g production amplitude Fo Qr exchange) dominates 
the background D o amplitude (B, Z exchange). On the other hand, for NPE, g pro- 
duction proceeds via F+ (co exchange) which is smaller than, and of different t 
structure from the even-L background D+ and G+ amplitudes (pomeron, f exchange). 
The expected single helicity flip character of the NPE amplitudes is clearly apparent 
for D+ and G+. 

7. g production by NPE: co exchange 

Although the presence of the relatively large D+ and G+ background waves com- 
plicate the determination of [F+[ they do yield valuable phase information. To inter- 
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IP,f ~ 

O÷ t\ I I 

F , ~ o  =OG 

D+ 

Fig. 7. An Argand plot of the phases of the NPE amplitudes, D+, F+, G+, in the g resonance 
region. 0 and 6 are the K-K 0 production and decay phases, respectively. The sketch is for 
- t  ~ 0.1 (GeV/c)2; for - t  ~ 0.5 (GeV/c) 2, F+ is rotated clockwise by about 90 °. The 
observed coherences (cf. fig. 6) favour 6 D ~ 110 °. 

pret the observed behaviour of the NPE coherences (D+F÷,  F+G+, D+G+), shown 
in fig. 6, we write the relative phase of each amplitude pair in the form 

f~LL' -- OL + 6L -- OL' -- ~L '  , 

where 0 are production phases and ~ decay phases of the K - K  ° system. Both D+ 
and G+ arise from pomeron and f exchange. We therefore expect their production 
phases, 0D ~- 0G, to be increasing relatively slowly from just above 90 ° as - t  
increases from t = 0. Now in the g resonance region we are above the Az (1310), 2 + 
resonance (SD approximately 120-- 160 °) and below the A~ (1900), 4 + resonance 
[6,7] (5 G approximately 20°). Moreover, for the resonant F + amplitude we have 
5 F --~ 90 ° and, assuming it is produced by co exchange, we expect, up to a sign, O F to 
change from about 5 0 - 6 0  ° at t = 0, to 0 ° at - t  ~ 0.4 (GeV/c) 2 where Im co changes 
sign *. This latter cross over is generally associated with the co nonsense-wrong- 
signature-zero at ato = 0 arising in the exchange-degenerate picture. The rapid phase 
change associated with w exchange is manifest in the behaviour of ~ cos ~ for D+F+. 

The observed NPE coherences (c f .  fig. 6) lead to the phases shown in the Argand 
plot of fig. 7, which appear consistent with the above expectations. However SU(3) 
and exchange degeneracy require the exchanges for 7r- p -+ ( K - K  °) p to be IP + f and 
- w .  That is the above values of OF should be increased by 7r, in disagreement with 

* This expectation is based on an analysis of K* production [3] ; there we found an c~ contri- 
bution somewhat modified from the exchange-degenerate form, 1 - exp(-inc0. 
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the sign of  the observed D+F+ coherence. 

f-do + do do ,7 
dow(P)dt - 7 ( P 1 1 -  ' + P -* P+P) + ~-~(Tr-p ~ p - p )  - ~ ( T r - p  ~ p°n ,j 

(8) 

Following Hoyer et al. [18] we apply finite-mass sum rules and two-component 
duality to relate the co-exchange contributions to these resonance-production reac- 
tions at a given energy: 

dooo(p)/dt [m 2 \--2~to(t) 

d o ~ o ( g ) / d t ~ [ ~ g )  " (9) 

From our results for IF+I (see fig. 6) we can estimate g production by co exchange 
at 10 GeV/c, provided we are given the g -+ KK branching ratio, 

doto(g) _ IF+ 12/[BR(g ~ KK)] . (10) 
dt 

Taking ato = 0.4 + 0.9t in eq. (9), we then calculate doto(p)/dt. In fig. 8 we compare 
our prediction with 6 GeV/c p production data [9], after allowing for the different 
beam momenta using the usual p 2-2~w dependence. The curves, shown for two dif- 

I i I r 

t d%/dt  (p prod.) 
6 GeV/c 

, o.1 
B.R.(g~KR,)= I*I, 

"~ I o . 

ool , , ! , , 
0 0.2 0.4 0.6 

-t  (GeM/c) z 

Fig. 8. Data for p production by co exchange at 6 GeM~c, taken from ref. [19].  The curves are 
the finite-mass sum-rule predictions, obta ined from the g product ion ampli tude F+ of fig. 6, 
for two different  values of  the g --+ KK branching ratio. The arrows at the bo t t om of the figure 
indicate data points  off  scale. 
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ferent g ~ KK. branching ratios, result from the curve through [F÷I on fig. 6. The 
comparison, which is most relevant * for 0.1 < - t  < 0.2 (GeV/c) 2, favours a branch- 
ing ratio 

7(g ~ KK) 
~ 0 . 0 1 5 .  (11) 

7(g ~ all) 

The 16 GeV/c data for isospin-zero NPE p production [20] have larger errors, but 
a similar comparison yields compatible results. 

8. g production by UPE: n exchange 

The structure of [Fo[ of fig. 6 is indicative of rr exchange, and the values may be 
extrapolated to the 7r pole (t =/~2) to give a more direct determination of the 
g ~ KK branching ratio than that we obtain from IF+l. To do this we use the 
Chew-Low form 

do  1 g2 [ _ t e b ( t - u 2 ) ~  . r M  2 
- 2 2 - ~ ~ - - _ - ~ - ) ( 2 L  + 1)J -q-~ ]fL 12 dM, (12) 

dt  m N P  L 

with L = 3, where M is the produced K - K  ° mass, q2 = ~_M 2 _/a2, and 

MR FVz-~nFK 
f L - M 2 _ M 2 _ i M  R F 

We integrate over the experimental mass bin, 1.55-1.85 GeV. The total width of 

the g resonance is P = PTr + FK + P0, where 

r i 0 t ) = 7 ~  . D ( q ~ n )  ' 

with a barrier factor D ( z )  = 225 + 45z 2 + 6z 4 + z 6 and interaction radius R = 3.5 
GeV -1. We take the mass and width of the g resonance to beMR = 1.69 GeV, 
7 = 0.18 GeV; and the momentum of the other decay channels, in addition to the 
n n  and KK channels, to be represented by qo =qK" We fit I fo l  2 to eq. (12) with 
(~ '~7~ and the slope b as free parameters. The fit ** is shown by the curve through 
[Fol on fig. 6 and corresponds to 

X/TK%r/3' = 0.056 + 0 .017,  

b = 4.5 -+ 1.1 GeV -2 . 

* Recall that the amplitude analysis for 0.2 < - t  < 0.5 (GeV/c) 2 revealed a relatively large G+ 
contribution, which made the extraction ofF+ particularly difficult. It is therefore not sur- 
prising that the anticipated dip in doco(g)/dt is very shallow. 

** We omit the first point owing to the large acceptance corrections in the near forward direc- 
tion. 
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If we take the particle table [14] values of the nlr branching ratio, %r/3' = ~4 + 1%, 
then we find the g -~ g~K branching ratio is 

7K/T = 1.3 + 0.4%. 

This determination is in agreement with the independent estimation, 7K/7 ~ 1.5%, 
which we obtained in sect. 7 from the NPE amplitude F+. 

The above numbers yield a ratio of  the KK. and nn decay modes of  the g reso- 
nance of  

7K/%r = 0.056 -+ 0.017.  

This is to be compared with the SU(3) value 

7K _ l [q  R ]7 
7n 51~R-, R ]  = 0.13.  

Note that SU(3) comparisons are better satisfied without including barrier factors 
[21 ]. To agree with SU(3) we would have had to input 7~/7 = 16%, which would 
have led to 7K/7 = 2%. 

9. Conclusions 

Here we summarize the main results of  our study of  A2 and g production by 
the reaction n - p  ~ K - K ° p  at 10 GeV/c. 

9.1. The A 2 mass region 

(i) We find A2 production proceeds dominantly by NPE. The t-channel D+ 
amplitude is dominant, but a non-zero (Y43) signal leads to a D2+ contribution 
which is, on the average, 10% of ID+[. 

(ii) The UPE amplitude Do is consistent in magnitude and t structure with that 
found in CEX A ° production, and lends support to the assumption that UPE is 
dominantly isovector in n - p  ~ A~-p. 

(iii) S-wave K - K  ° production is important in the A2 region, the t structure 
implying a strong non-flip component at small t (Z exchange). Combined with the 

o o K - K  ° analysis as a function of  mass [7], and with K+K - -  and KsK s production 
data [15], this suggests the existence of  an I =  1, 0 + state under the A2. 

(iv) There is relatively little P-wave K - K  ° production, although the P+D+ 
coherence is well determined. 

(v) A2 and K*(1420) + production are related using the f, f '  dominated scheme 
for the pomeron. We estimate the pomeron relative to f exchange and find, for 
example, at - t  ~ 0.2 (GeV/c) 2 at ratio 1:1 in n - p  ~ A~-p at 10 GeV/c. 
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9.2. The  g mass region 

(i) We find g product ion proceeds dominantly by UPE (Tr exchange). 
(ii) We extrapolate to the n-exchange pole and find 7x/~TK[7 = 5.6 + 1.7%, where 

7,/')" and ~/K/7 are the 7rzr and KI( branching ratios, respectively, of  the g. Taking 
~ ' . /7 = 24% this gives 7K/7 = 1.3 + 0.4%. 

(iii) The resonant NPE amplitude F+ is reasonably consistent with co exchange. 
It is, however, poorly determined,  because g production by NPE (co exchange) is 
masked by the production o f L  = 2 and L = 4 K - K  ° systems, which can proceed by 
pomeron and f exchange. 

(iv) Finite-mass sum rules and duality allow a comparison of  the NPE amplitude 
F+ with p-product ion data. This hypothesis leads to an estimate of  the g ~ KK 
branching ratio of  7K/')' ~ 1.5%. 

Finally, we note that at higher energies 7r-p -~ K - K ° p  will be dominated by 
even-L K - K  ° production by NPE. Information about the odd-L states will be ob- 
tained mainly through interference with the even-L product ion amplitudes. The 

+ -.+T.O 0 + study of  the reactions rr-p - K - h s p  and K+p -~ Ks~r- p at SPS energies will, when 
combined with 7rN and KN elastic-scattering data, provide a powerful probe of  the 
properties of  the pomeron. 

We thank P. Collins, A. Irving and T. Shimada for discussions during the course 
of  this work. We are grateful to the Fonds National Suisse and the British Science 
Research Council for support.  One of  us (E.N.O.) thanks the Turkish Government 
for financial support.  
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K°K ° K-K ° production reactions are The high-statistics data for the various K-K +, s s, 
analysed. In particular we study both the isospin-zero and isospin-one KK S-wave in 
the mass region from threshold through the observed structure at 1300 MeV. The 
implications for the scalar mesons are discussed. We also determine branching ratios, 
and study interference of the produced f, f' and A2 resonances. 

1. Introduction 

High-statistics data now exist for the following KK production processes [1-5] 

7 r - p ~  K - K ÷ n ,  z r - p ~  K°K°n ,  
+ - -  ÷ 

lr n ~ K  K p ,  7 r - p ~ K - K ~ p .  

These are valuable for particle spectroscopy. The KK channel can have states 
jPC =0+÷,  1 - - ,  2 ÷÷ .... of both isospin I = 0  and 1. The subset with J + !  even can 
be produced by pion exchange, and so can be also studied in zrrr production. The 
S-wave (0 ÷÷) is sizable, and shows interesting structure, throughout the mass region 
from the KK threshold to 1.5 GeV. 

j e c  = 0÷÷ mesons are of unusual importance; however, they continue to be a 
centre of controversy [6-12], both theoretically and phenomenologically. The 
reasons are clear. In the quark-gluon approach we expect a rich spectrum of 0 +÷ 
states below 1.5 GeV. In addition to the conventional P-wave q~ nonet, it has been 
proposed [12] that there could be a low-lying qqft~l nonet. A third possibility for 
0 ÷÷ mesons are states built entirely from gluons [13]. On the phenomenological 
side the identification of 0 ÷÷ mesons is far from easy. This is true despite their 
strong coupling to the readily accessible 0 - 0 -  channels, such as ~'zr, KI(, ~'K. The 
resonances either appear very broad, or near the KI~ threshold, or hidden under 
the leading peripheral 2 ÷÷ states. In each case they are prone to ambiguity. 

Here we use the observed KK angular distributions to carry out partial-wave 
analyses, paying particular attention to the production mechanisms of the KK 
system. After defining, in sect. 2, the production amplitudes that we shall use, we 
begin (sect. 3) by re-analysing zr-p ~ K-K°p  data [4, 5]. This reaction is valuable in 

520 



A.D. Martin, E.N. Ozmutlu / KI( production 521 

that only I = 1 KI( states are allowed, but suffers from the disadvantage that it is 
dominated by natural parity exchange (NPE). Our motivation here is to show that 
the data do contain an unnatural parity exchange (UPE) component and to isolate 
the amount of S-wave K-K ° production. 

In sects. 4, 5 we analyse K-K ÷ production data. These charge-exchange reac- 
tions are dominated by UPE. First we study the KI( D-wave in the f, A2 and f' 
mass region, determining resonance branching ratios and studying interference 
effects. Then in sect. 5 we perform various partial-wave analyses of the K-K ÷ data, 
and compare with the ANL analysis [14]. For K-K ÷ both I = 0 and I = 1 S-wave 
production are allowed. We find that even with data for the four KK processes the 
isospin assignment of the S-wave structure at 1300 MeV is confused. 

Finally, in sect. 6, the information on the 7r~" ~ KK S-wave is combined with 
that for the elastic ~rzr-, zrTr channel and a coupled-channel analysis is performed. 
The implications for the scalar mesons are discussed. In sect. 7 we present our 
conclusions. 

2. The ~'N --~ KKN amplitudes 

To analyse the data for the various ~N ~ KKN reactions we use the amplitudes 

Lx± = x/~(HL~ + ( -  1)X+IHL._x), (1) 

for ,~ # 0, and Lo ~ HLO for ,~ = 0, where HLx are t-channel helicity amplitudes 
describing the production of a KI( system of angular momentum L and helicity A. 
To leading order in the incident energy, Lx± correspond to KK production by 
natural and unnatural parity exchange (NPE, UPE) respectively; ,t = 0 production 
proceeds via UPE alone. We will use the abbreviated notation L±---L1±. 

The moments of the KK angular distribution can be expressed [5] as a sum of 
bilinear products of the form ' * Re(L,,LA ). A sum over helicity flip and non-flip at 
the nucleon vertex is implicit in each product*, for example 

t * - -  t * I * Re (L~,L~) - Re(L++.~,L++;x + L+_;~,L+_;~) (2) 

The observed moments do not contain interference terms between NPE and UPE 
t * amplitudes. That is, terms of the form Re (L~,+Lx_) do not occur. 

We normalize the ,rN ~ KKN amplitudes so that their moduli squared give the 
contribution to do'/dt dM, where M is the mass of the KK system. Thus the ~r 
exchange contribution may be written in the form 

with 

l 
Lo = N(2L  + 1)CLfL (rrzr -* KK), 

2 2 t 2 

mNPL \a.,n' , ,  (t--/.~2) 2w q,, ' 

* The available data for rrN-* KKN is for unpolarized initial and final nucleons. 

(3) 

(4) 
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where mN, /z, M are the nucleon, pion, KK masses respectively; (g2 /4"h ' )  = 14.6, PL 
is the pion laboratory momentum and q~ = I M  2 __[,2. The 7rTr ~ K I (  partial-wave 
amplitudes, f12---f(TrTr ~ KK), are normalized such that 

f12 = 1 % / i - ~  ~ e ' (8 '+82),  (5) 

where assuming only two channels 0rcr, KI( with k = 1, 2) 

f k k  = 1 ( r  I emiG _ 1). (6) 

For simplicity the labels,/ ,  L are omitted from ~k, ~7, 6, Due to Bose statistics, ~r 
exchange can produce only even-L isospin-zero, or odd-L isospin-one, KK systems. 
Further only I = 1 states occur in 7r-p ~ K-K°p  and only even-L states occur in 
7r-p--> K°K°n. For or-p--> K-K+n the isospin coefficients in eq. (3) are 

{~!  for evenL  
e L  = ' ' ( 7 )  

5, for odd L .  

For rr-p-->K K°p we have CL=,/½, odd L only, and for o o ¢r p ~ K s K s n  we have 
CL = 41, even L only. 

For resonant KK production we factor the 7rN ~ KEN amplitude into a term 
describing the production of the resonance, Ax(t), which contains the t depen- 
dence, and a term describing the decay into the KK channel which contains the M 
dependence. For example, the production of an A2 (I = 1) resonance of helicity A is 
described by 

D(~ I=1) = Ax (t)B(M) , (8) 

where we expect Ax (t) to be of the form appropriate to, say B, p, or f exchange 
(depending on 3. and the charge configuration), and the decay factor to have a 
Breit-Wigner resonance form 

M (mRr~r¢) 1/2 
B(M) = mE - M  2 - imRFR ' 

(9) 

where the widths, FR, are M-dependent  

2L+1 R 
i i qi DL(qi R) 

r R =  E = - : - =  , 
i i "q i  / L I L ( q i K )  

(10) 

where q~ is the value of the decay channel momentum, qi, at the resonant mass 
mR. For a spin L = 2 resonance we take the barrier penetration factor to be 
D2(x)=x4+3x2+9, and the radius to be R = 3.5 GeV -1. 
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3. KK ° production 

Information on the I = 1 K-K ° channel has come from the analysis of the 
10 GeV/c r r -p~  K-K°p data obtained by the University of Geneva spectrometer 
group [4, 5]. The NPE amplitudes are dominant and are well determined by the 
data, but the UPE amplitudes are harder to extract unambiguously. In the original 
analyses [4, 5] some simplifying assumptions were made, and of the two solutions in 
the UPE sector, the one with the sizable S-wave structure in the 1300 MeV K-K ° 
mass region was favoured over a solution with Po > So. In view of the spectroscopic 
implications of this result, we repeat these analyses with a more complete ampli- 
tude determination in the UPE sector, paying particular attention to the So-Po 
ambiguity. 

We first reanalyse the 7r-p~ K-K°p data in the A2 mass region (1.2 < M  < 
1.4 GeV) as a function of t, the momentum transfer at the nucleon vertex. Here we 
perform a t-dependent analysis rather than fitting the moments in each t bin 
independently. We parametrize the amplitudes in terms of Regge forms (as 
described in appendix A of ref. [15]), though any suitably flexible form would 
suffice. We describe D+, D2+ in terms of pomeron and f exchange, and P÷ by ~o 
exchange using the forms given in ref. [16] with xp = 0.2, but with a,o ~ of. The 
UPE amplitudes Po, P -  are described by pion exchange (with absorptive cor- 
rections) and similarly So, Do, D_ by B (and Z*) exchange forms. We allow a free 
normalization constant for each amplitude, Lx±, except for P_ which we relate to 
Po by an absorbed pion exchange form. We fix the Do, D_ phase difference to be 
~r, and we take the B and Z trajectories as in ref. [17]. In addition to the t- 
dependent) Regge phase, we include, as extra parameters, constant decay phases 
between the amplitude pairs Do-Po ,  D o - S o  and D + -  P+. 

Considering that K-K ° production in the A2 mass region is dominated by NPE, 
in particular by D+, it is natural to ask how well the data determine the So and Po 
amplitudes; especially since these amplitudes only contribute to (y~t)  with J ~< 3, 
M ~< 1, and that these moments have, in addition, contributions from the other 
amplitudes. We therefore proceed in stages. First we describe the higher moments, 
J = 4, M <~ 4 and J = 2, 3 with M/> 2, in terms of P+, D+, D2+, Do and D_. Fig. 
lb shows that a satisfactory fit ** is obtained. Next we predict the contribution of 
these amplitudes to the lower moments; the result is shown by the continuous 
curves in fig. la. We see, for example, that (Y3 °) is well-described by P+, D+ 
interference indicating that either Po is negligible or Po, Do are incoherent. The 
evidence for non-zero So and/or Po is seen by the discrepancy between the curves 
and the observed (yO), (y~)  and (Yz ~) moments. A non-zero So contributes to 
these three moments via ]Sol 2, SoDo and SoD_ interference, respectively, whereas 

* We use Z to denote 2-- quantum number exchange [17]. B and Z exchange contribute 
respectively to the flip and non-flip components of So and Do. 

** We do not include in the fit the first t bin, centred on - t  = 0.09 (GeV/c) 2, due to the 
large acceptance corrections in this t interval. 
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Po contributes via IPo] 2, [Pol 2 and POP-, respectively. These alternative ways of 
removing the discrepancy are the origin of the So/Po wave ambiguity. Now we see 

that we need contributions which increase as Itl decreases and this suggests a (~-- 
exchange) Po contribution, rather than So. However, the inclusion of just Po would 
underfit (yO) and overfit (Y°),  and secondly it would have a magnitude in excess 

-- 0 0 of that permitted by comparing 7r+n ~ K-K÷p and 7r p ~ KsKsn data. Po is 
KOK ° forbidden in s s production and so 2N(Y°)  for this reaction should equal 

N ( Y °  )_0.8941Pol2 for 7r+n~K-K+p.  The 6 GeV/c data are compared in fig. 2. 
The line is obtained from the K - K  + data assuming the mass dependence of Po is 
given by the tail of the p resonance decaying into the KK channel*. Increasing Po 

I I I I 

g-- 

2 0 0 -  ~, 7"rp-- K s Ks n o o 

~L o - r rn-  K K p / / / \ \  

6 c ~ v / c  ~,, \~o 
o , ~  ~ o o -  

, o o  ° / /  

\ \  I 
\ _ - - _ J  

-200 - 

I I I [ 
II 1.2 1.3 1.4 

M (K K) GeV 
y0  Fig. 2. The solid points, taken from ref. [14], are obtained from the ( 2 )  moment for 7r p ~  

KOK ° s sn for - t < 0.2 GeV 2 (ref. [3]) by normalizing to zr+n-~ K-K÷p data for - t < 0.08 GeV 2. 
K 0 ~ o  The continuous line is the prediction for the sr~s points obtained by subtracting the P0 

contribution from the zr+n--* K-K+p (Y°) moment (the open points). The dashed line cor- 
responds to the Po which would be needed to describe the K-K ° data if the So contribution 
was omitted. 

* We take the form used in ref. [14] (see footnote 26), but do not use SU(3) for the normal- 
isation. Rather we normalize the p tail by requiring that p-f interference describes the (yO) 
moments for the K-K + production reactions[l]. 
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destroys the agreement between the line and the Ks°K ° data. We take this to be the 
maximum Po allowed. 

Including this Po contribution in K-K ° production leads, after allowing for the 
different beam energies and t values, to the description given by the dotted lines on 
fig. la. The residual discrepancy is attributed to So. However it does not have the t 
dependence expected of B exchange and it is necessary to include a Z-exchange 
contribution to So. The best fit to the moments is shown by the dashed curves in 
fig. la  and the t dependence of the K-K ° production amplitudes is shown in fig. 3. 
We note the dominance of D+, the 'cross-over' zero in P+; and that Do is compa- 
tible with the values obtained from charge-exchange A ° production [18], see ref. 
[ 5 ] .  

Now we need to consider the MKK dependence of the K-K ° amplitudes. We 
repeat the analysis described in ref. [4], except that we fit all non-zero moments 
and include P_, D_, D2+ effects. We fix Po (and P_) to correspond to the p 
resonance tail form described above, and we take D2+ = 0.1D+ as found in the A2 
region. The results for ]So] are shown in fig. 4, together with the input value of ]Po]. 

" r r - p -  K-  K ° p I0 GeV/c  

,~ 4 

:L 

_ 1 I I IEI  I 1 I 

t -  
IP+I ~ 

O.2 04 O.6 0 
-t (6eV 2 ) 

I I I I I I F  

UPE 

IP-I - 

I I I I I I I 

ISol 

O.2 O.4 0.6 

Fig. 3. The I0 GeV/c ~--p~ K-K°p amplitude magnitudes in the A 2 m a s s  region, 1.2 < M  < 
1.4 GeV, normalized so that their square gives the contribution to do,/dt. 
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t ' ~  

, , , , . ,  
¢ , , ,  

, .- . I  

2 . 5 -  

2 . 0 -  

1.5 

1.0 

0.5 

I I I I I 

ISol 

I I I I I 
1.1 1.2 1.3 1./, 1.5 

M (K-  K ° )  GeM 

Fig. 4. The  mass  dependence of ISol obtained from the 10 G e V / c  ~" p ~ K - K ° p  data for the t 
interval 0.07 < - t  < 1 GeV 2, shown together  with the input Po. The ampli tudes are normalized 
so that their moduli  squared give the contribution to dcr/dM. The 8 tail prediction is that  of 
subsect. 5.1. 

4. D-wave K+K - production 

The data [I] for the reactions 

n" -p  -~ K-K+n,  (11 ) 

rr+n-* K+K-p ,  (12) 

allow a study of I = 0, 1 KK states. In contrast to K-K ° production, only I = 1 
exchange contributes to these reactions and UPE dominates in the forward direc- 
tion. First we use the observed J = 4 moments of the KI~ distribution to determine 
D-wave production in the f and A2 m a s s  region. 

4.1. f -* K K  branching ratio 

We analyse the sum of the observed ( Y ~ )  moments for the two reactions, as a 
function of t, in terms of the amplitudes Do, D± describing I = 0, and Do describ- 
ing I = 1, KK production. We use the data in the mass bin 1.25 < M <  1.3 GeV to 
determine the f--, KK branching ratio. We take the pion-exchange form of eqs. (3) 
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and (4) for the dominant f-production amplitude D~ -°. We integrate MZ]f[]2/q,~ 

over the mass bin using 

- me 2 - M  2 - imfFf ' 
(13) 

where Ff(M), F~(M) are given by eq. (10), mf = 1.275 GeV and Ff(mf)= 
0.180 GeV. The parameter to be determined by the data is the product of the 
f--> rrTr and f-+ KK branching ratios. 

r~r,~'pKR/F21 
X : x f  I f  / f l M = m f .  

The other I = 0 amplitudes are parametrized by conventional forms 

2 - -  t 

D - = - c  ~------7_tDo *=°, 

D+ = e-b  +'D_ . 

We fix ]Do~=ll in terms of the known behaviour [18] of UPE A2 production as 
found in the charge-exchange process ~--p--> A°n and in the K-K ° analysis. To 
correct to the 1.25-1.3 GeV mass interval we integrate over an A2 resonance form 
with mA = 1,31 GeV, FA(mA) = 102 MeV and A2-+ KB: branching ratio of 4.7%. 
The best fit to the J = 4, M ~< 2 moments for - t < 0.4 GeV 2 is shown in fig. 5, and 
the amplitudes are shown in fig. 6. The corresponding parameter values are 

x =0 .019+0 .003 ,  c_ = 0 .6+0 .1GeV -1 , 

&, = 3.0+ 0.7 GeV -2 , b+ = 3.1 + 0.9 GeV -2 . (14) 

The value of b,, is typical of one-pion exchange, and taking the f-+ ~'~- branching 
ratio to be 81%, the value found for x implies 

B.R. (f--> KK) = (2.4+0.4)%. (15) 

This result is in agreement with other independent determinations [2, 11, 19], but is 
smaller than the ANL value [1] of (3.8 + 0.7)% obtained from the same data. The 
ANL determination [1] compares N(yO)  of K+K - and lr+rr - production data over 
the interval 0.08 < - t  < 0.4 GeV 2. There are two reasons for the discrepancy 
between these results. First, we find Do* o, D~ have a sizable effect, particularly at 
the larger t values. Second, we renormalize the ANL rr+rr - production data so that 
they extrapolate to the ~- exchange pole prediction in the p mass region*. If we 
were to omit this renormalization factor for the rr*rr data our result for the 
branching ratio would be increased by a factor of 1.25. 

* The A N L  group found [20] that the p production amplitudes,  extracted from their ~'+zr 
data, fell below the ~- exchange prediction by a factor 3.2/3.6.  
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50C 
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=,,,,20O 
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0.1 0.2 0.3 
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Fig. 5. The fit to the sum of the J =4 moments of the 6 GeV/c data [1] for reactions (11) 
- + 

and (12), for 1.25<M(K K ) 1.3 GeV. 

4.2. f , f '  and A ° interference in K + K  - production 

The (yO) moments of the ANL data for reactions (11) and (12) show interesting 
structure, as a function of M, which has been interpreted [1, 21] in terms of inter- 
ference between f, f' and A2 resonance production. The sum and difference of these 
moments for processes (11) and (12) may be symbolically expressed in terms of 
these resonance production amplitudes: 

~( yO ) ~ if12 +lf,12+ 2 Re(if'*) + Ia2] 2 , 

A ( Y ° ) - R e  ( / A * ) + R e  ( /A2) . '  * 

The E(Y4 °) data shows clear evidence of the f-f' interference effect and allow a 
determination of the f' ~ ~-~- branching ratio. On the other hand, the data for 
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Fig. 6. The K-K + production amplitudes resulting from the fit shown in fig. 5. 

A(Y°) show little evidence for f-A2 interference, but do show structure (at least for 
the t band 0.08 < - t  < 0.2 GeV 2) which may be attributed to f'-A2 interference. 
This is surprising, since we would have anticipated f-A2 interference to dominate 
the f'-A2 effect, and implies that f' and A2 production should have important 
contributions from, respectively, the I = 0 and 1 non-flip amplitudes* D÷+:x=o 
(recall that f production proceeds dominantly via the pion-exchange amplitude, 
D÷-;x=o). On the other hand, we have noted that the general properties of A ° 
production, and in particular the t dependence [18], are consistent with the 
dominance of the flip (B-exchange) amplitude, rather than the non-flip amplitude, 
for - t  < 0.15 GeV 2. However, this is not a firm conclusion and so we allow the 
A ( y ° )  data to decide the flip, non-flip character D~ = 1. 

In our study of these interference effects we analyse the data for the sum and 
difference of the (Y4 ~ )  moments with M ~< 2 as a function of M(KI~). We 
parametrize the amplitudes as a function of t and M(KK) (see eqs. (8)-(10)), and fit 
to the data in the three available t intervals (bounded by /min, --0.08, --0.2 and 
- 0 . 4  GeV 2) simultaneously. In this amplitude analysis we include both D+±;x=o 
for both I = 0 and 1 =  1 K÷K - production. The observed moments indicate that, 

* We may assume A = 0 since there is no evidence of f'-•2 interference in A(Y4 ~) with 
M ~ 0. The notation D,NxN,;a is that of eq. (2). 
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for - t  < 0.4 GeV 2, the A # 0 amplitudes are small; and so we retain only contribu- 
tions from D+_;_ (absorbed ~r exchange) and D+ (A2 exchange) for I = 0 K+K - 
production. We assume that A = 0 f production is dominated by ~r exchange, and 
we include a small contribution [5] from the tail of the g resonance, F+-;A =o. 

For A2 production we can factor the amplitudes as in eq. (8) 

Dtx =1 = A A~( t )BA~(M) , (16) 

but for I = 0 K+K - production we must extend the formalism to include both the f 
and f' resonances. We use the mass matrix approach to describe these overlapping 
resonances. For ~" exchange the structure of the I = 0 D-wave amplitude is given 
by eqs. (3) and (4) with 

~r~- KI( 
/ ( m r ~ K K ) =  ~ gR [P(M)]R,R 'gR ' ,  (17) 

R,R' 

where the summations R and R' are both over the f and f' resonances, and where 
i ~2 r~i 

gR; --=mRIR are functions of M, the KK mass, as given by eq. (10)*. The mass 
propagator is given by 

L 3 m~ - M 2 - i m f , F f ,  ' (18) 
with 

3 = A -  ig'~'~g K~ - igf~,~gf KR , (19) 

where A is the mass mixing parameter. 
We base the parametrization of the t dependence of the production amplitudes 

on Regge exchange forms. Even with very flexible parametrizations** we are 
unable to produce a sizable f'-A2 interference effect in A ( y ° )  and satisfactorily fit 
the data. The reason is clear: the f'-A2 interference occurs via 

( / - ) I = 0 / ) I =  1" / - ) I=0/-) I= 1" ~ Re ~,_,+ . . . .  +---++ ,--++ ~A=o. (20) 

The first term arises from 7r-B exchange and is limited in the f' mass region by the 
absence of significant structure in the data in the f-A2 mass region where this term 
would be much larger. Also from our knowledge of A ° production [5, 18] an upper 

I=1 bound exists for D + + ,  and to produce appreciable f'-A2 interference requires non- 
flip f' production to be so large as to be in contradiction with the £(yO)  data. 

In the original ANL analysis [1, 21] of the (yO) moments alone, they did not 
consider the individual production amplitudes***; if, as the data implies, f'-A2 
interference occurs mainly via A = 0 amplitudes, then it can be seen that their 
results violate the Schwartz-type inequalities [f']. ]A2t ~>Re ( f ' A ~ ) .  

* For the mass dependence of the total  widths, FR, the decay channels other than ~r~', KI( 
are collectively associated with the momentum of the Br/ channel. 

** For example,  allowing the ampli tudes to have free (t- independent)  phases, in addition to 

their Regge phase. 
*** Also they did not a t tempt  a simultaneous description of the data in the three available t 

intervals. 
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Although the fit does not show significant interference structure in A(yO), it 
does reproduce the observed structure in £ (Y°  ) through f-f' interference in the 
dominant r -exchange amplitude, Do. The observed interference structure selects 

rr-n- K K /  -n'-n- KI'~ the negative sign of the coupling ratio ge ge /g f '  gr  , corresponding to an f-f' 
mixing angle less than the magic angle [21]. The resulting description of the £( Y4 ° ) 
data is shown in fig. 7 for the two extreme values of the f ' ~  7r~r branching ratio, 
namely 0.5% and 1%. Here we have fixed the f-~ rrrr, f ~ K K  and f'--, KI~ branch- 
ing ratios to be 81%, 2.4% and 70% respectively, and set me, = 1.515 GeV, Ft, = 
60 MeV and 2~ = 0. The fit is not sensitive to small variations of the latter three 

400 

300 

parameters. 

v 

o - 

^ i i J 

I I I ] ] ~ I i 

i 
I , 9 -  

,/, 

I I I I f 

o -~, 

t ~ t t t I f I 
50-  c) _ 6  . . - 

0 - e , , - . w , 4 = ~ - i '  
1 i I l I 1'  ' l  

1.0 1.2 1.4 1.6 

M ( K K ' )  GeV 
Fig. 7. The sum of the J = 4, M = 0 m o m e n t s  for the two K - K  + product ion  reactions (eqs. 
(11) and (12)) at 6 G e V / c ,  for three  t intervals: (a) - t < 0 . 0 8 ,  (b) 0 . 0 8 < - t < 0 . 2 ,  (c) 0 . 2 <  
- t  < 0.4 G e V  2. The data are f rom ref. [1]. The cont inuous  and dashed curves cor respond  to 
an f, f', A2 description of the data with an f'--* rrrr branching ratio of 1% and 0.5 % respec-  
tively. 
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WAVE -rr r r - -  KR" 
AMPLITUDE 

Im f 

12 

4 6  ,r" 
17 

-0.08 0.04 t54'[ I 0.04 
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Fig.  8. T h e  D - w a v e  ~r~r ~ KI{ a m p l i t u d e  s h o w i n g  the  f a n d  f '  r e s o n a n t  s t r u c t u r e .  T h e  n u m b e r s  
o n  the  c u r v e  a re  t he  c .m.  e n e r g y  in G e V .  

The f '~  ~r~" branching ratio result of 0.75 + 0.25 % is consistent with the upper 
limit of 0.9% obtained from o o KsKs production by Beusch et al. [22]. The dis- 
crepancy with the ANL determination [1] of (1.2+ 0.4)% arises simply from our 
different input values of the f ~ KK branching ratio (see subsect. 4.1). In fig. 8 we 
show the Argand plot for the L = 2, I = 0 f(Tr~- -* K[() amplitude, as given by eq. 
(17). 

5. ~'~" -~ KK partial-wave analysis 

The partial-wave analysis of KI~ production data is more complicated than that 
of zr~r production. States of both even/odd G parity can be produced via odd/even 
G-parity exchange (for example ~'/B exchange). Thus for each partial wave both 
I = 0 and I = 1 KK systems can be produced; states with I +L even (for example 
S*, f, f') by 7r exchange and states with I + L  odd (for example, 8, A2) by B 
exchange. The latter possibility is forbidden in zrN-* zr~'N processes. 
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As noted in sect. 4, in order to help unravel the I = 0 and I = 1 production 
amplitudes the ANL group [1] studied both 

~--p ~ K-K+n,  

rr+n~ K K+p, 

for which the KI~ production amplitudes are of the form (LI=°+L ~=1) respectively. 
However, even with perfect data on both processes further assumptions are neces- 
sary to carry out a 7rrr ~ Kf( partial-wave analysis. 

At small t only the (Y°) moments of the KI( angular distribution are found to 
be appreciable, as anticipated from 7r-exchange dominance. It therefore appears 
reasonable to follow the procedure adopted for analysing rrrr production [23], and 
to assume that only the nucleon flip amplitudes are non-zero. We will return to this 
point later, but for the moment we suppose it is true. The sum and the difference 
of the even-J moments for the two reactions can then be expressed in terms of 
bilinear combinations of (A = 0) amplitudes containing only terms of the form 

E( yO): Re(L,~L,,~*), Re (LBL'B*), 

A(y°): Re(L~'L'B*), (21) 

and vice versa for the odd-J moments. The amplitude superscript, which denotes 
the expected exchange mechanism, distinguishes between I = 0 and I = 1 KK 
pl"oduction. The r-exchange amplitudes, L =, produce KK systems with I+L  even, 
whereas the odd I +L KI~ states may be associated with B exchange. In the actual 
analyses the M # 0 moments are included to take account of the small contributions 
from the L~ amplitudes. 

The ANL group [14] have used their data for the t interval - t < 0.08 GeV 2 to 
determine the amplitudes L "  and L B in the mass region from the KK threshold to 
1.6 GeV. To distinguish between the possible Barrelet-related solutions, they 

o 0 consider other information. In particular by comparing with KsKs production data 
[3] to limit the size of P'~, and by studying the t dependence of the amplitudes, they 
clearly select the physical solution to be one which contains an S"  enhancement 
around 1300 MeV. Moreover by requiring P= to be consistent with the behaviour 
expected for the high-mass tail of the p meson they resolve the remaining phase 
ambiguity in favour of the solution in which the phase of S = advances slowly in the 
1300 MeV mass region. The resonant D-wave is taken to be the reference ampli- 
tude and is assumed to be dominated by the ~r-exchange contribution to f and f' 
production. 

We have repeated the above partial-wave analysis with the same assumptions, 
but using the sum and the difference of the moments for the two reactions rather 
than considering the reactions individually. From the Barrelet-related solutions we 
are led to select essentially the same solution. 

To a very good approximation we also obtain the same results for the L '~ ampl- 
itudes by analysing only E(Y~)  for even J and A(yM) for odd J, in terms of just 
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the 7r-exchange amplitudes (together with small contributions from L~). Again we 
use the data [1] for - t  < 0.08 GeV 2. We relate the amplitudes to fL(Trlr-~ KK) 
using eqs. (3) and (4). The magnitudes of the partial-wave amplitudes, fL, are 
shown in fig. 9. The neglect of B exchange is found not to distort the analysis. For 
example, although the z~(Yo ° ) moment shows that S B is non-zero, we have IsBI2 << 
IS#I 2 for - t < 0.08 GeV 2. 

For the above analysis we required th~ value of the slope parameter, b, of eq. 
(4). Some idea of the value of b is obtained by fitting the observed J = 0, 4 
moments [1, 24] to the form 

- A t  e2b( / .2) 
£ ( y O ) _  ( t - / z2 )  2 , (22) 

for - t  < 0.4 GeV 2. The results are shown in fig. 10. For £(Y4 ° ) (dominated by D = 

at small t) and for £( Yo ° } in the S* region (dominated by S"  at small t) the values 
of b are typical of pion exchange. However the results for E(yO) suggest a shal- 
lower slope for the S-wave in the 1300 MeV region. In the detailed amplitude 
analysis we found that the pion-exchange contr ibution has a slope b= = 3 GeV -2 
and so we used this value for P'*, D = and F =. However  we allowed the slope of 
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Fig. 9. The magnitude and phase of the 7rrr +KK amplitudes determined from the 6 GeV/c 
ANL K-K + production data [1]. The reference phase, ~bD, is taken from fig. 8. The L = 3 
amplitude corresponds to the tail of the g resonance [5]. For clarity the large errors for cbp 
near threshold are not shown. The results for ~bp are compared with the p tail phase. 
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the S-wave to have the mass dependence necessary to account for the behaviour 
shown in fig. 10, even though this only gives a small effect on the partial-wave 
amplitude (fig. 9) resulting from the - t < 0.08 GeV 2 data. We return to this 
anomalous S-wave behaviour in the 1300 MeV mass region in a moment. 

To summarize at this stage, we see that the S-wave is important throughout the 
mass region, with a threshold S* behaviour and structure at 1300 MeV. Provided 
we assume the dominance of nucleon-flip production amplitudes (for - t  < 
0.08 GeV2), this structure is to be attributed to the I = 0 KI~ S-wave, SL  The 
amplitudes P'~ and D = are consistent with p and f, f' resonant forms respectively. 
We now study the crucial KK S-wave in more detail, first in the mass region just 
above the KK threshold, the S* region, and then in the 1300 MeV region. 

5,1. The S* region 

To illuminate the S-wave production mechanism we analyse the sum and the 
difference of the moments, (Y°)  with J ~< 2, of reactions (11) and (12) as functions 
of t and M in the threshold region, M <  1.1 GeV. We input P~, pB, D ~, D B 

amplitudes in terms of p, ~b, f, A2 Breit-Wigner forms. We parametrize the larger 
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Fig. 10. The slopes, as defined by eq. (22), determined from the (a) (yO) and (b) (yO) 
moments for the sum of the two K K + production reactions at 6 GeV/c, for - t  < 0.4 GeV 2. 
The effect of & production is seen in the slope found at 1.02 GeV. 
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amplitudes, S "~ and S B, in terms of S* and 8 resonant forms taking explicit account 
of the K+K - and K°t(  ° mass difference*. For example, the S-wave ~rTr ~ K - K  + 
partial-wave amplitude is of the form 

with 

+ 1 1 / 2  rrrr K I (  2 2 • wrt 2 • KK. 2 
f(rr~r-+K K )=',~(q,,qc) gs*gs* [ m a - M  -tqn(ga ) -tqo(ga ) ] /A,  

A = [ m 2 ,  _ M 2 _ .  . . . .  2 . - /  Kg:,2~r 2 _ M 2  - . ~n 2 lq,~gs* ) -lq~gs* ) Jlm~ zq,,(ga ) _/~(gKR)2] 

j . . r l /  x KI~ K I ~ a 2  
[~tqc-qo)gs* g~ J , 

where qo, qo, q=, q,  are the c.m. momenta in the K K +, K°K °, ~'~r, r r /  channels 
respectively, and ~ = ½(qo + qc). We take the 6 parameters to be ma = 970 MeV, 

/ K K ~ 2  3 /  rrr t~2 S:g F~'_= 50 MeV and ~ga ) = ~g~ ) • For the we input ms* = 980 MeV but let 
gsKY and gs=. ~ be free parameters. 

We assume that t dependence of the amplitudes is given by ~r and B Regge 
exchange, with a= =0.83 (t-/z2), aB = - 0 . 2 5  +0.83t,  with t in GeV 2, but we allow 
a free normalisation parameter  for S B (and for pa) .  The S'~-SBrelative phase is 
fixed; the production phases by the ¢r and B exchange forms and the decay phases 
by the S* and S resonant forms, with an additional background phase of about 85 ° 
for S '~, coming from the ~rrr ~ 7rrr channel [8]. 

This simple 7r-B exchange parametrization is able to describe all the features of 
the data** in the threshold mass region, M <  1.1 GeV, The t dependence of the 
amplitudes at M = 1.02 GeV is shown in fig. 11. We do not quote the S* couplings 
since they are dependent on the choice of the S* mass; the K+K - production data 
alone are insufficient to determine the mass and the partial widths of the S*. The 
mass dependence of the I = 1 amplitude, S B, is compared with the prediction of the 
K - K  ° data in fig. 4, after integrating S B over the t interval 0.07 < - t  < 1 GeV z and 
allowing for the increase in PL to 10 GeV/c.  

5.2. The S-wave in the i300 M e V  region 

The S-wave KK mass spectrum obtained from K+K - (and o o from KsKs) produc- 
tion data shows a significant bump at 1300 MeV. This structure was originally 
assigned [3] to the I = 1 KK channel, but the above analysis and that of ref. [14] 
attribute it to the I = 0 channel. In fact the mass dependence of [/s[, fig. 9, is 
reminiscent of an I = 0 S-wave resonance on a smoothly falling 8" background; 
however the phase of fs does not match this description. Also we remarked that 

* The formalism is very similar to that used [25] to allow for the K-p, K°n mass difference 
in low-energy K-p scattering. 

** The agreement of ISal from the ANL data with the 6 tail contribution has also been noted 
in ref. [26]. 
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Fig. 11. The t dependence of the 6 GeV/c K K + production amplitudes at M(K-K ÷) = 
1.02 GeV. 

the t dependence of the S-wave suggests sizable contributions other than ~r 
exchange in this mass interval (see also the K°K ° data of ref. [3]). This effect can 
alternatively be seen in fig. 12 where we plot the S-wave contribution, Is' °12+ 
Is'=lL isolated from K+K - data, using Y(Y°'2) and E(Y2) to estimate the D-wave 
contribution to Y(Yo °), and assuming the P-wave contribution is negligible. We also 
plot - A ( Y o  °) since the higher moments indicate that this is dominantly due to 
I = 0, 1 S-wave interference. There is a striking difference between the S* region, 
where we found the 7r, B exchange description satisfactory, and the 1300 MeV 
region. 

Also in sect. 3, we saw K - K  ° production provided independent evidence of non- 
pion-exchange S-wave contributions in the 1300 MeV region. Moreover the t 
dependence indicated that the non-flip amplitude, which we denote by sZ, is more 
important than the flip amplitude, S B, at small t. 
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Fig. 12. The S-wave K - K  + contribution showing the different t dependence in the threshold 
and 1300 MeV mass regions. The solid points are obtained from the 6 GeV/c  data [1] for 
£( yO,2 ), •( y2 2), £( yO ). The open points are - A( yo  ° ). 

Recall that a crucial assumption in the 7r-p ~ K-K+n and ~'+n-* K-K+p partial- 
wave analysis [14] was the dominance of the flip amplitudes S "~ and S B. While this 
is a reasonable assumption for I = 0 production, S '~, we see that it is dangerous for 
I = 1 KK production for - t < 0.08 GeV z. 

To demonstrate the inherent ambiguity that this can introduce in such analyses, 
we repeated the whole analysis but now including a fixed contribution IS z] as 
determined by [Sol of the K - K  ° data in the 1300 MeV region. We find that l/s] is 
reduced to a value indicated by the dashed curve in fig. 9, while the other ampli- 
tudes do not change appreciably. This is not surprising as, to a crude approxima- 
tion, the data determine the sum IS~lZ+ [sZl z. 

In summary we see that the evidence for the structure in S I=° at 1300 MeV 
is not compelling and that their exist arguments to assign the bump to S t=l  
production. 

6. The scalar mesons 

The KK channel is a valuable source of information on the controversial 0 ++ 
meson states. These mesons are of unusual importance in particle spectroscopy 
because in addition to the conventional P-wave, q~l nonet of the quark model, it 
has been proposed [12] that there is a low-lying nonet of S-wave qqelel states. If 
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Fig.  13. T h e  q u a r k  c o n t e n t  of  the  qqf:lf] n o n e t .  

multiquark states exist we can expect two nonets of 0 ÷+ mesons below about 
1.5 GeV. 

For a 0 +÷ nonet let us denote the isotriplet members by ,5, the isodoublets by K 
and K, and the isosinglets by E and S. Suppose that the S and e mix magically in 
the conventional qcl non•t, then E and ,5 will be degenerate in mass, with the S 
state (which contains the sg pair) at a higher mass. On the other hand, if the S and 
• states are magically mixed in the qqcl(t nonet, then the quark content is as shown 
in fig. 13. That is, the S and ,5 and degenerate in mass and the • lies at the lower 
mass. The resulting mass spectrum is sketched schematically in fig. 14. It was the 
approximate degeneracy of the observed S*(980) and ,5(970) which prompted Jaffe 
[12] to assign these states to the qqclq nonet, together with broad •(~-~r) and K(Krr) 
states. Indeed, the only obvious problem with this identification is the observed 
width of the ,5 ~ zrr/decay; since qq(:l~l-~ qq + qft are 'fall apart '  decays, it should be 
much broader. Of course this approach raises the problem of observing another 
nearby 0 ++ nonet (e', ,5', K', S' of fig. 14). 

The spectrum described above represents an idealized situation. We expect some 
violation of magic mixing. For example, in a qqflq state one q(l pair spends a frac- 
tion of the time in a colour octet state [12] or in a 0-  state. In either case this will 
lead to violations of magic mixing. Also the members of the two nonets can mix by 
gluon exchange. 

All the non-strange 0 +÷ mesons can couple to the KK channel. This highlights 
the importance of the isospin identification of the S-wave KI~ structure at 1.3 GeV. 
If an ! = 1 state (,5') is confirmed in this mass region it will be clear evidence for the 
existence of two nonets. 

MASS 

s. / 
'Y" - -  ( q ~ ) L = l  

- -  8' NONET 

6 / 
x - -  q q ~  

NONET 
E 

Fig.  14. S c h e m a t i c  m a s s  s p e c t r u m  fo r  0 ++ s ta tes .  
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Some time ago Morgan [6] reviewed the scalar mesons and attempted to 
accommodate them in a non-magically mixed qcl nonet. In this description the I = 0 
wave contained an S* resonance near the threshold of, and strongly coupled to, the 
KK channel, and a broad e(1300) resonance coupled dominantly to the ~r~r chan- 
nel. The recent data showing the narrow S-wave KK structure at 1300 MeV, with 
the possibility of an I = 0 component, opens the way to further (or different) I = 0 
states. 

The present knowledge of the magnitude and phase of the I = 0 S-wave in both 
the 7rTr ~ ~'~r [23, 27] and ~rTr ~ KK channels means a quantitative resonance 
analysis is possible [10]. We have attempted such a coupled channel multiresonance 
analysis in the 0.8-1.5 GeV mass region. Even allowing the ambiguity* in Ifsl in the 
1300 MeV mass regions, we are unable to obtain a satisfactory description of the 
data. We considered overlapping resonances using the mass matrix formalism, and 
also M-matr ix  parametrizations. Only the latter types of parametrization are able 
to reproduce the approximately constant behaviour of ~bs below 1.3 GeV. A typical 
(12 parameter) M-matr ix fit is shown in fig. 15. In this example, the amplitudes 
have poles** on sheet II at E = 0.986-0.007i, 1.07-0.33i GeV, and on sheet III at 
E = 1.37-0.17i, 1.42-0.21i GeV; the S* is associated only with the first sheet-II 

1 [ I I I 

0.~ 

O.E 

0.4 

S WAVE-n--rr-KR AMP 

- -  M M A T R I X  
- - - S *  f l R E I T -  W I G N E R  

o l | I I L 
LO 1.2 1.4 

I I I I I 

280* ~ s / 

240* / / 

2OO* 

120= 
I.O 1.2 1 . 4  

M IKK) GeV 

Fig. 15. The description of the S-wave ~'Tr ~ KI~ amplitude in a coupled channel  M-mat r ix  
analysis (continuous curves); and a S* Brei t -Wigner  plus background description (dashed 
curves). 

* To do this we do not fit ]fs[ in the 1.25 < M <  1.35 GeV mass region. 
** The notat ion is as in ref. [8]._ 
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pole. Note that in a constant M-matr ix  (or constant scattering length) approach the 
S* is represented by a sheet-II pole alone. The behaviour of ~bs near threshold is 
not reproduced by a Breit-Wigner S* description which has nearby sheet-II and 
sheet-III poles [6, 8, 28]. 

A major problem in all fits* is the matching of the rapid decrease in ]fs] just 
above the S* with the behaviour above 1.1 GeV. The slow variation of the phase, 
~bs, is found to rule out narrow structures ( - 2 0 0  MeV) in the 1.1-1.3 mass region. 
Recall that there is a solution for the K - K  + production amplitudes in which d~s 
advances rapidly (ahead of the f resonance phase**) in the region, but this is surely 
unphysical since it requires the S B, P~ amplitudes to have the same rapid phase 
behaviour as S ~. 

It is instructive to look at a simple S* Breit-Wigner resonance plus background 
fit to ]fsl up to 1.15 GeV together with the 7rrr ~ ~'rr data. The form used is 

i i 
gs*gs* 

f i j  - -  2 2 • i 2 j 2 , 
ms* - M  - t [ (gs*)  qi +(gs*) qJ] 

where i, f label the ~rcr, KK channels. We include a linearly rising elastic back- 
ground phase (SB) in the 7rrr channel [8]. The result is given by the dashed curve 
on fig. 15, which also shows the prediction for &s assuming no background in the 
KI(  channel. Note the discrepancy in 4~s; a satisfactory description of both [fs] and 
6s  is difficult and requires a complicated amplitude structure. For completeness we 
give the parameter values corresponding to the fit: 

ms* = 1.005 + 0.003 GeV,  •B (at 1 GeV) = 89.0 ° , 

(g~£)2=0.198±0.009 GeV,  (g~.g)2 =0 .277±0.018 GeV,  

which lead to a sheet-II pole at E = 1 . 0 1 2 - i  0.030 GeV, and a sheet-III pole at 
E = 0.985 - i 0.065 GeV. 

7. Results and conclusions 

We have performed partial-wave analyses of KK production data in the mass 
region from threshold to 1.5 GeV. The S-wave is important throughout the mass 
region showing, besides the S*, interesting structure at 1300 MeV. The higher 
partial waves are well described by p, f, f', A 2  r e s o n a n c e  forms. 

We attempted to resolve I = 0 and I = 1 S-wave contributions. We first analysed 
K - K  ° production to estimate the I = 1 component. Although the amplitudes in the 
UPE sector are not well-determined, and have an S/P wave ambiguity, we found 
that the data imply a significant non-flip S-wave amplitude. 

* The description of ref. [10] has the same difficulty. 
** The observable  is I~bs--~bDt. 
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Turning to K - K  + production, we first studied the D-wave contribution. We 
determined the f ~ KK branching ratio to be (2.4 + 0.4)%. Contrary to an earlier 
analysis [1, 21] we found that we could not describe the A(Y~4) data in terms of 
f '-Az (or f-A2) interference. From the observed f-f' interference structure we 
determined the f ' ~  zrzr branching ratio to be (0.75 + 0.25)%. 

We repeated the detailed ANL partial-wave analysis of K - K  + data, using their 
assumption of the dominance of flip amplitudes, and found essentially the same 
results. In particular the I = 0 S-wave, fs, had, in addition to the S*, a significant 
bump at 1300 MeV, together with a slowly advancing phase ~bs. 

We stressed that the flip-dominance assumption is dangerous for the I = 1 S- 
wave contribution at small t. We showed this explicitly; we repeated the K - K  + 
analysis with an S-wave non-flip contribution as given by the K - K  ° data. In this 
analysis Ifsl was found to be smooth at 1300 MeV. We concluded that the isospin 
assignment of the S-wave structure at 1300 MeV is not resolved. 

The implications of the KI~ analysis to the status of scalar mesons was discussed. 
The possibility of I = 0 and/or  ! = 1 states at 1300 MeV encourages the speculation 
of the existence of a second nonet of 0 ++ states; namely the qq~lft nonet proposed 
by Jaffe. However, even allowing the full ambiguity in [fs[ at 1300 MeV we were 
unable to find any satisfactory multiresonance description of the I = 0 S-wave. The 
major problem, assuming the zrzr ~ ~'~- amplitude is known, is to correlate the 
behaviour of [fsl and ~bs for the 7rzr-~ KI~ amplitude. 

We thank N.M. Cason, D. Cohen, A.C. Irving, R. Jaffe, D. Morgan, C. Nef and 
A.B. Wicklund for valuable discussions and communications. We acknowledge the 
support of the British Science Research Council. One of us (E.N.O.) thanks the 
Turkish Government for support during a part of this work. 
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The high-energy behaviour of a double discontinuity of the six-point amplitude is 
studied in the dual-resonance model and in a hybrid Feynman-diagram model. This 
discontinuity imposes, through unitarity, a bound on the intercept of the bare-pomeron 
singularity. It is shown that in both models the ordinary Regge trajectories which couple 
to two-body amplitudes decouple from the discontinuity. The origin of this decoupling 
is discussed. The asymptotic behaviour of the double discontinuity is controlled by sister 
trajectories in the dual-resonance model, and by the genuine three-particle Regge poles 
in a Feynman-diagram model. Insofar as the intercepts of these trajectories are lower 
than those of the usual Regge poles there is no strong constraint on the pomeron. 

1. Introduction 

The (bare) pomeron singularity in the topological expansion (or dual unitarisation) 
[1 -3 ]  *** is given by diagrams which have the topology of  a cylinder. The domi- 
nant region of  phase space which gives rise to the pomeron singularity corresponds 
to the production of  two heavy clusters, both masses of  which are of  the order s. 
The same region of  phase space is also responsible for the new, pomeron-like, singu- 
larity in a twisted dual-loop amplitude [4]. 

The asymptotic behaviour of  the pomeron amplitude is closely connected with 
the scaling properties of  the two-cluster production process. It is straightforward 
to show that if the amplitude for cluster production scales (i.e., if it depends only 
on scaling variables like M~/s where Mi are the cluster masses), then the correspon- 
cling unitarity integral gives a pomeron singularity of  intercept one. 

These scaling properties appear to be very natural if the cylinder contribution is 
interpreted in a parton language. The pomeron in this picture corresponds to the 
(double) scattering of  two fast valence quarks, unlike the reggeon amplitude which 

* On leave from NORDITA, Copenhagen, Denmark. 
** On leave from Institute of Nuclear Physics, Cracow, Poland. 

*** The papers [3] are review papers. 
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Fig. 1. The unitarity equation relating the double diseontinuity of the six-point amplitude to the 
two:cluster production. 

contains an additional damping factor due to a wee quark. It is this picture which 
underlines the QCD model for the pomeron singularity [5,6]. Explicit calcula- 
tions done in two dimensions [6] showed, however, that the pomeron singularity 
was cancelled in the complete sum of diagrams. This cancellation may be a feature 
only of a two-dimensional model and might not appear in four dimensions [5]. 

The two-cluster production amplitude is related by unitarity to the double dis- 
continuity of the six-point function, as shown in fig. 1. In the topological expan- 
sion scheme the six-point amplitude is the planar one and Regge-pole dominated 
(fig. 2) for high s, M~ and M~. It has been shown by Veneziano [7] using Schwartz 
inequalities that the amplitude corresponding to two heavy cluster production 
would scale (or, more precisely, would be bounded from below by some function 
which scales) provided that the ordinary (planar) Regge trajectories coupled to the 
double discontinuity of the six-point amplitude. There are no obvious reasons (like 
Steinmann relations [8] etc.) which would require the vanishing of the double dis- 

2 

( ) 6  
5 

Fig. 2. The kinematics of the six-point amplitude; s -- (P2 + P 5) 2 , M2 = (P3 + P4) 2, M2 = (P 1 + 
p6) 2. 
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continuity of fig. 1 or the decoupling of Regge poles from it. Nevertheless, as 
observed by Veneziano [7] this decoupling does occur in the dual resonance model. 
A clarification of the reasons for this decoupling could lead to a better understand- 
ing of the bare-pomeron singularity in the dual unitarisation scheme. 

In this paper we give an intuitive argument for why the ordinary reggeons 
decouple and show that there are contributions from other exchanges characteris- 
tic for multiparticle amplitudes. In sect. 2 we briefly discuss the relation between 
the 6-point amplitude and the two cluster production which follows from unitarity. 
In sect. 3 we discuss the double discontinuity of the six-point amplitude in the 
dual resonance model (DRM) and a hybrid Feynman diagram model. We exhibit 
the decoupling of the ordinary Regge poles within the DRM. A similar decoupling 
takes place also in the hybrid Feynman diagram model where the Regge poles are 
generated using two-particle amplitudes. We argue that the decoupling may be easi- 
ly understood by inspecting the energy flow in the cut diagrams. We find that the 
high-energy behaviour of the double discontinuity in the DRM is governed by sister 
trajectories [9,10]. Within the hybrid Feynman diagram model the non-vanishing 
contribution is given by three-particle Regge poles [ 1 1 ]. Finally, in sect. 4 a brief 
discussion of the results is given. 

2. Unitarity bound on two-cluster production 

In order to demonstrate the relation between the double discontinuity of the 
six-point amplitude and the pomeron let us first consider a one-dimensional model 
with simple factorisation. The unitarity equation of fig. 1 takes the form 

1 diSCM~ 1 diSCM~ A6 = g(M21) g(M~2)A(s, M~, M~) 2-7 (2.1) 

where A is a two-cluster production amplitude and g(M 2) are coupling constants of 
a system of mass M i to the external particles. The couplings g(M~) can be obtained 
from the two-body amplitude. Regge-pole behaviour of this planar amplitude yields 
for large M2: 

-- c(M ) , ( 2 . 2 )  

where ~ is the Regge-trajectory intercept. The same Regge trajectory also contributes 
to the asymptotic behaviour of the 6-point amplitude for large s and for M] = x is, 
M~ = x2s (fig. 2). Assuming that this contribution has a non-vanishing double dis- 
continuity one obtains: 

1 1 
27 diSCM~ ~t" diSCM2 A6 =/~(xl' X2)S". (2.3) 

Combined with (2.1) and (2.2) this implies scaling of the two-cluster production 
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amplitude A: 

A(s, M~I, M 2) = e-Z(x  lxz)-~12 ~Xl ,  x2) =- A(Xl ,x2)  . (2.4) 

Such a scaling behaviour gives a bare-pomeron singularity with intercept equal to 
one: 

const ,-- 2 2 
ImAp(s)= s JJ dMldM21a(s'M]'M~)l:=s c°nst ff~xi~2~4(x''x:)l: 

(2.5) 
This factofisable model illustrates in a simple way how the scaling properties may 

originate from unitarity and Regge behaviour. The simple factorisation is not, how- 
ever, expected to hold, in general. The asymptotic (Regge) behaviour is built up 
from peripheral states rather than from states on parent trajectories. The peripheral 
states are expected to be highly degenerate and therefore arguments based on simple 
factorisation alone are not convincing. One can, however, apply Schwarz inequali- 
ties to the planar unitarity equation of fig. 1 [7]. It then follows that the two-clus- 
ter production amplitude is bounded from below by some function which scales, 
provided that ordinary Regge trajectories couple to the double discontinuity of the 
six-point amplitude. The Schwarz inequality is (fig. 3): 

[,401421, M~, s)[ 2 ~.!(1/2i) diSCM] (1/2i) diSCM~ A6[ 2 (2.6) 

[ImAa(M~, t = 0). ImA4(M ~, t = 0)] 

Assuming Regge behaviour for Im A4 and for the double discontinuity in the nume- 
rator with the same Regge trajectories in both i.e., 

Im Aa(M~, t = O) = c(M~) c~(°) , (2.7) 

1 diSCM~ 1__ disc. 2 A6 =/~(Xl, x2) s a(0) (2.8) 
2i 2i 1,, 2 

one obtains 

IA(M21 ' M 2, $)12 ~ C-2~(X1, X2)(X 1 .X2 ) -  .(0). (2.9) 

When combining with (2.5) (assuming some intrinsic cut-off in transverse momen- 
tum) this gives [7] a lower bound on the pomeron: 

Im A p (s, t = 0) >i const, s .  (2.10) 

2 2 2 2 

R1~n~ ~ ~ eL'-- I n2 nln2 5 nl nl n2 

Fig. 3. Schwarz inequality which follows from the unitarity equation for the double disconti- 
nuity. 
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To conclude, the bound (2.9) requires two independent assumptions: 
(1) planar unitarity, which leads to inequality (2.6) where all the amplitudes on 

the r.h.s, are the planar ones; 
(2) the asymptotic behaviour for the double discontinuity and for the four-point 

amplitude is the same (sC~). 

3. High-energy behaviour of the double discontinuity 

In sect. 2 we showed that the possible scaling behaviour of the two-cluster pro- 
duction amplitude depends upon whether the ordinary Regge trajectories couple 
in the double discc,ntinuity of A6. In this section we discuss this question within 
two models for A 6. 

The kinematics of the 6-point function is defined by fig. 2. We are interested in 
the asymptotic limit where the following invariants are large: 

$ =$25 = ( P 2  + P s )  2 , S345 = ( P 3  +P4  - - P s )  2 , 

M2= s34 =(P3 +P4) 2 , $234 =(Pa +P4 - P 2 )  2 , 

11//2= s61 = (Pl + P6) 2 , 

The asymptotic behaviour of the 6-point amplitude is given by single Regge-pole 
exchange. We consider the configuration which is relevant to two-cluster produc- 
tion with ingoing and outgoing particles as in fig. 2. In this configuration s, M21 and 
M22 are positive while 8345 and s234 are negative. 

The double discontinuity of the six-point amplitude is defined by 

d i s c s 3 4 d i s c s 6 1 A  6 = A6($34 + ie, $61 + ie) - A6($34 - ie, $61 -- ie) (3.1) 

In the dual-resonance model, the Regge-pole limit of the B 6 function takes the folio- 
wing form when all large variables are negative [12]: 

1 1 

86 ~ f dxlxi-al2-1(1 - X l )  -°t23-1 f dx2x2°~56-1(1 - x 2 )  - a 4 s - I  

0 0 

X [-tv34(1 - x 1)(1 - x2) - ot61XlX 2 - ff234x1(1 - x2) - 0~34s(1 - x l )  x21~123 

(3.2) 

where ai/, aijk are the linear Regge trajectories. The evaluation of the discontinuity 
(3.1) requires, however, knowledge of B 6 in limits where some of the variables (0t34 
and a61) are positive. Besides the contribution B (a) obtained by analytic continua- 
tion of the expression (3.2) there is, in this region, a contribution B (#) from sister 
trajectories [9,10]. 

Let us first compute the double discontinuity o fB (a) in c~34 and a6l for negative 
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0t234 and 0~34 s. The singularities of B(6 a) in 0134 , 0t61 are generated by the factor 
(_z)  a 123 in the integral (3.2) where 

z(t~a4, ~61) = (~34( 1 - Xl)( 1 - x2) + ° t 6 1 x l x 2  + a234xl(  1 - x2) + (~345x2( 1 - Xx) 
(3.3) 

The phases of the various terms in (3.1) are determined by: 

( -z(a34 + ie, 0t61 + ie)) t~123 

= [ e - / t r ~ 1 2 3 0 ( Z )  + 0 ( - - z ) ]  Izl a l2a,  

(-z(a34 - ie, if61 "1- ie))  a 123 

= {O(z) [eilra1230(Xl +X 2 -- 1) + e-~a1230(1 --X 1 - x2)] + O(--z )} I z l  ~123 , 

(--z(a34 + ie, ct61 -- ie) )  a 123 

= {O(z)[e-hra1230(X1 + X  2 - -  1) + emat230(1 - - X  1 -- X 2 ) ]  + O(--Z))[zl ~123 , 

(--Z(0~34 - -  ie, ~61 -- ie))  ~ 123 = [eiTr°t1230(2) + 0 ( - z ) ]  Izl ~ 123 . (3.4) 

Substituting this in (3.1) and (3.2) gives 

diSCM2 discM2 B(6 ~) = 0 .  (3.5) 

The decoupling (3.5) of  ordinary Regge trajectories a holds only in the configura- 
tion relevant for c lus ter  p r o d u c t i o n  i.e., for negat ive  5234 and $345. In the configura- 
tion which corresponds to a cascade decay that is for positive $234 and $345 the 
double discontinuity of B(6 a) is non-zero. 

The contribution of  the sister trajectory/~ to the double discontinuity may be 
obtained using the results of refs. [9,10]. The amplitudes B 6 ( $ 3 4  - ie, 561 + ie)  and 
B 6 ( $ 3 4  + ie, s61 - ie)  are given by analytic continuation from the region where all 
large variables are negative, keeping 

- -  $2345345 - 1 r / -  
$36561 

during the continuation. Hence the/~ trajectory does not contribute to these ampli- 
tudes. The two other amplitudes in the discontinuity (3.1) have a non-vanishing/3 
contribution given by eq. (B.21) of ref. [10] and its complex conjugate. The expres- 
sion for the double discontinuity in the DRM is thus 

d i s c s 3 4  d i sc s61  B 6  

2/~123 I"(/~12a) m~-- ~345 Z 0t34 / 

[(_  34s] (, _  34__2  I- '23 +a 6 l 
X L\ -~34! 0~34/ a' 

(3.6) 
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2 

3 • o J b  -~ 1 

4 = A ~ 6 ct° 
5 

Fig. 4. The hybr id  Feynman  model  for the six-point amplitude.  

where/3123 = 1(~123 - 1). Because the tx trajectory does not contribute (cf. eq. 
(3.5)), eq. (3.6) gives the leading contribution to the double discontinuity in the 
single-Regge limit. 

Let us now consider the hybrid Feynman diagram for the 6.point amplitude as in 
fig. 4. We show in the appendix that the amplitude corresponding to this diagram 
may, in the single-Regge limit, be expressed in a form very similar to the dual-reso- 
nance amplitude (eq. (3.2)): 

1 

At~ = f ~(~ka ... ~kd)[--)kahc$34 -- ~kb~kd$16 --  ]ka~kd$345 -- ~kb~kc$234] r[dx,. 
0 (3.7) 

The parameters hi (i = a, b, c, d) are Feynman parameters corresponding to the lines 
(a)-(d) in the diagram of fig. 4. The exact form of the function q~ is irrelevant for 
our purposes. The vanishing of the double discontinuity of A6 follows exactly as for 
the dual-resonance amplitude. It is again essential that the variables $234 and 8345 are 
negative. 

The physical origin of this decoupling which was difficult to see in the DRM is 
more transparent in the Feynman-diagram model. Taking the discontinuity in one 
of the variables (say $34) implies that all the cut lines in the diagram are put on-shell 
and that their energy components have a common sign. This is illustrated for a simple 
ladder representation of the reggeon in fig. 5, where the arrows indicate positive 
energy flow. The (common) direction of the arrows is dictated by energy conserva- 
tion in the part of the diagram to the left of the cutting. 

It is now clear why the double discontinuity must vanish in the kinematic region 
under consideration. Taking a further discontinuity in s61 would require the arrows 
on the lines (b) and (d) also to be directed to the left. This would violate energy con- 
servation in the right-hand part of the diagram. In a "cascade" configuration on the 
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2 

"\" (It b 3 : ~ : 1 

4 = / ai d : 6 
/ 

/ 

s 

Fig. 5. Discontinuity of the single ladder amplitude in the variable s34. The arrows indicate the 
energy flow. 

other hand, where the directions of the lines 1 and 6 are reversed, there is no conflict 
with energy conservation and the double discontinuity is non-vanishing. 

The above argument for the decoupling of ordinary Regge poles from the double 
discontinuity is evidently quite general. It applies to any diagram which has the struc- 
ture of fig. 4, i.e., when the Regge pole is generated through insertions of four-point 
amplitudes. 

A non-vanishing double discontinuity may be generated by two-particle irreducible 
insertions. This is realised in amplitudes with three-particle Regge poles [11]. As 
shown in fig. 6 the doubly cut three-particle ladder diagram is kinematically allowed. 

4 .  S u m m a r y  a n d  d i s c u s s i o n  

Our study of the double discontinuity of  the six-point function was motivated 
by its relation to the bare-pomeron singularity. We showed that if the asymptotic 
behaviour of the discontinuity in the single-Regge limit (fig. 2) is determined by the 

J 

I = I 
I 

- I 
I ~ l 

i = :  

I .  - t 
i : ; 

Fig. 6. Double discontinuity of the three-particle Regge pole. 
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ordinary Regge poles, then the intercept of the pomeron trajectory must be equal 
to, or above, one [7]. 

In both models that we considered, the dual-resonance model and a hybrid Feyn- 
man-diagram model, it turned out that the ordinary Regge poles did no t  contribute 
to the discontinuity. Moreover, we traced the reason for this decoupling to the pat- 
tern of energy flow in the two-particle insertion that generates the asymptotic beha- 
viour. Taking the discontinuity in either $34 or s61 fixes the direction of energy flow 
in the cut lines (fig. 5), and the direction is opposite in the two cases. Consequently, 
the decoupling of the ordinary Regge poles is quite general, and there are no strong 
constraints on the pomeron intercept. 

The fact that the discontinuity receives no contribution from ordinary Regge 
poles does not mean that it vanishes, however. In the DRM we found that the asymp- 
totic behaviour is given by the first sister trajectory, 3 = ~a - ~. This trajectory 
decouples from two-particle states and appears only in six-point, and higher, ampli- 
tudes [9,10]. While there were some indications previously * that the 3 trajectory 
is linked to the pomeron, the present relation is much more direct. It implies, in par- 
ticular, that if the 3 trajectory has a higher intercept than the ordinary a trajectory, 
then the bare pomeron intercept is above one. This is not the case in the standard 
DRM, where 3 is the leading trajectory only in the region ct < - 1. (In the Neveu- 
Schwarz model, on the other hand, it has been shown [ 13] that 3~r > a~r for %r < 
+ 1.) 

In the hybrid Feynman diagram model we saw that Regge poles that are generated 
through two-particle irreducible insertions should have a non-vanishing double dis- 
continuity. Such multiparticle Regge poles have been studied previously [11 ], and 
the present work suggests a relationship between them and the sister trajectories of 
the DRM. However, it is not clear that the Regge poles generated through multi- 
particle ladders have the rather unusual analytic properties exhibited by the 3 tra- 
jectory. For example, the 3 trajectory contributions to asymptotic limits in which 
the large variables have different signs are not in general related by analytic continu- 
ation (of the asymptotic form). Furthermore, the 3 trajectory does not couple to two 
particles. The multi-ladder Regge poles of course do contribute to four-point ampli- 
tudes [11 ]. However, in these amplitudes the poles will be renormalised by two-par- 
ticle insertions. Since such iterations do not contribute to the double discontinuity 
we studied in this paper, it could indeed turn out that the Regge pole governing the 
high-energy behaviour of the discontinuity is different from those seen in four-point 
amplitudes. In this case it should have a lower intercept than the ordinary Regge 
pole, as it lacks the two-particle insertions. This agrees with the bound given by the 
pomeron intercept. 

Our results may also be compared with the calculations of the bare pomeron in 
two-dimensional QCD [6]. In that model, apparently due to the absence of transverse 
dimensions, the two-cluster production amplitude does not scale and there is no bare 

* The papers [3] are review papers. 
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pomeron. Because of the simple factorization property of the states this implies that 
the "Regge pole" a decouples from the double discontinuity (2.1). This is consistent 
with the above results. 

One of the authors (J.K) would like to thank Gabriele Veneziano for discussions 
and Joe Weis for discussions and useful correspondence. Both of us are grateful to 
Roger Phillips and Chan Hong-Mo for the hospitality of the Theory Division of the 
Rutherford Laboratory. 

Appendix 

In this appendix we derive the representation (3.7) for the hybrid Feynman dia- 
gram. The amplitude corresponding to this diagram is given by the following expres- 
sion 

8 Xc¢123 
A6 ~ f d4k d41 I-IPi , (A.1) 

o ( x - ( k + 0  2) i=1 

where Pi are the propagators corresponding to the various lines of the diagram. Intro- 
ducing Feynman parametrization [14] and performing the loop interpretation we 

obtain: 

*~ IldXiS(ZX i - 1) 
A6~ dxx ~123 f ~ ~  , (A.2) 

o o 
where 

D=~'g[ x-~ta~tbs34+ ~b~kdS61 +A.B ~ka~tdS34s + ~kb)tc$234] + ~ ~-~kg[X- (.O] +~, 

(A.3) 

A and B are equal to a sum over X parameters corresponding to the upper and lower 
vertices respectively, after neglecting terms O(Xg) which are negligible in the single- 
Regge limit. The function D in (A.2) depends on the parameters X and upon invari- 
ants which are not large. 

Rescaling the variable ks, for w < 0, 

N = Xg(X - oa) -x , (A.4) 

one arrives at the formula (3.7) after integrating over x and Xg. 

References 

[1] G. Veneziano, Phys. Lett. 52B (1974) 220; Nucl. Phys. B74 (1974) 365; 
M. Ciafaloni, G. Marches'mi and G. Veneziano, Nucl. Phys. B98 (1975) 472,493. 



P. Hoyer, J. Kwiecinski /Double discontinuity and the bare pomeron 419 

[2] Chan Hong-Mo, J.E. Paton and Tsou Sheung Tsun, Nucl. Phys. B86 (1975) 479; 
Chan Hong-Mo, J.E. Paton, Tsou Sheung Tsun and Ng Sing Wai, Nucl. Phys. B92 (1975) 
13. 

[3] Chan Hong-Mo and Tsou Sheung Tsun, Rutherford Laboratory preprint RL-76-080 
(1976); 
K. Konishi, Rutherford Laboratory preprint RL-76-095 (1976); 
G.F. Chew and C. Rosenzweig, Lawrence Berkeley Laboratory preprint LBL-6783 (1977). 

[4] Ch. B. Chiu and S. Matsuda, Nucl. Phys. B134 (1978) 463. 
[5] F.E. Low, Phys. Rev. D12 (1975) 163; 

S. Nussinov, Phys. Rev. Lett. 34 (1975) 1286; Phys. Rev. D14 (1976) 246; 
J.F. Gunion and D.E. Soper, Phys. Rev. D15 (1977) 2617. 

[6] R.C. Brower, J. Ellis, M.G. Schmidt and J.H. Weis, Nucl. Phys. B128 (1977) 131,174; 
M.B. Einhorn, E. Rabinovici, Nucl. Phys. B128 (1977) 421. 

[7] G. Veneziano and J.H. Weis, private communications. 
[8] R.C. Brower, C.E. de Tar and J.H. Weis, Phys. Reports 14 (1974) 259. 
[9] P. Hoyer, N.A. TSrnqvist and B.R. Webber, Phys. Lett. 61B (1976) 191; 

P. Hoyer, Phys. Lett. 63B (1976) 50. 
[10] P. Hoyer, N.A. T6rnqvist and B.R. Webber, Nucl. Phys. B115 (1976) 429. 
[11] B.M. McCoy and T.T. Wu, Phys. Rev. DI2 (1975) 546,578; 

S.G. Matinyan and A.G. Sedrakyan, ZhETF Pisma 23 (1976) 588; 24 (1976) 240; [JETP 
Lett. 23 (1976) 538; 24 (1976) 214]; 
I.T. Drummond and I. Halliday, Nucl. Phys. B105 (1976) 293; B106 (1976) 493. 

[12] Chan Hong-Mo, P. Hoyer and P.V. Ruuskanen, Nucl. Phys. B38 (1972) 125. 
[13] C. Barratt, Nucl. Phys. B120 (1977) 147. 
[14] R.J. Eden, P. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix (Cam- 

bridge University Press, 1966). 



Nuclear Physics B60 (1973) 26--44. North-llolland Publishing Company 

ANALYTICITY AND A FINITE-ENERGY SUM RULE FOR 
THE REGGEON-PARTICLE AMPLITUDE IN 

a + b - * c + d + e  

P. t t O Y E R  * 
Department of Theoretical Ph.vsics, Oxford University 

J. KWIECII~SKI 
Rutherford High Energ'y Laboratory. Chilton, Didcot, Berkshire, and hTstitute of  Nuclear 

Physics*", Cracow 23, Poland 

Received 23 February 1973 

Abstract: We consider a single-Regge limit of the amplitude for the process a + b ~ c + d + e. 
In this limit the amplitude is proportional to the reggcon-particle amplitude for a + i 
c + d, where i is a reggeon. We study the analytic structure of this amplitude using the 
dual resonance model and a perturhation theory model. We conclude that finite-energy 
sum rules can be derived, which relate the absorptive part of the amplitude at low 
(Pc +Pd )2 to a part of the double-Regge vertex function of the original five-point 
amplitude. We discuss some phenomenological applications of the sum rules. 

1. I n t r o d u c t i o n  

In this  paper  we shall invest igate  the  s t ruc tu re  o f  the  a m p l i t u d e  for  the  process  

a + b --* c + d + e, where  a, b, c, d and e are scalar part icles ,  in the  h igh-energy  l imit  

where  Sab --* oo, Sd c ~ ~o whi le  Sod is kep t  f ' txed***, fig. 1. In such a l imi t  the  five- 

poin t  a m p l i t u d e  is p r o p o r t i o n a l  to  the  reggeon-par t ic le  amp l i t ude  for a + i -* c + d, 

where  i is the  exchanged  reggeon.  A l t h o u g h  the  s ingular i ty  s t ruc tu re  o f  the  five- 

po in t  f u n c t i o n  is ra ther  com p l i ca t ed  in general  [ 1 , 2 ]  t ,  one  may  hope  t ha t  its 

s t ruc tu re  is s impler  in a h igh-energy l imit  like tha t  o f  fig. 1. This  would  t hen  make  

possible the  der iva t ion  of  f in i te-energy sum rules [3, 4 ] ,  wh ich  would  be useful  in 

the  analysis  of  da ta  for th ree-par t ic le  final states.  
As was recen t ly  shown ,  there  is an ana logous  s i t ua t ion  in the  case o f  inclusive 

react ions .  The  cross sec t ion  for a + b -* c + X is given by  a d i s con t inu i t y  of  the  

* Supported partially by a grant from the University of Helsinki, Finland. 
** Present address. 

*** We use the notation Sab = (Pa + Pb )2' Sa~- = (Pa - Pc )2, etc. 
t In ref. [2] the problem of formulating finite-energy sum rules for-five point amplitudes 

that relate the low-energy region in Sab to the single-Regge limit is considered. This paper 
also contains a discussion of the general analyticity structure of the amplitude. 



• . . -  . 

P. Hoyer, J. Kwtecmskt, Analyticity and a finite-energy sum rule 27 

C 

a d 

Fig .  1. T h e  s i n g l e - R e g g e  l i m i t  o f  t h e  p r o c e s s  a + b --+ c + d + c. 

amplitude for a + b + e '+ a + b + e in the forward direction [5], fig. 2a. In the 
limit when the missing mass is much smaller than the total energy, i.e. Sab/Sab~ >)" 
1, the six-point amplitude is proport ional  to a reggeon-particle elastic amplitude 
(fig. 2b). in dual and ladder diagram models it turns out that the reggeon-particle 
amplitude has the singularity structure of  a normal four-point function. Hence one 
may write down finite-mass sum rules [6], which connect the low missing-mass 
region with the triple-Regge limit. First applications of  the FMSR to inclusive data 
are quite encouraging [ 7 - 9 ] .  

O. Q 

b j v . . ~  b b b 

C- c ~ c 

(a) (b) 

Fig. 2. (a~ The six-point amplitude which is related to the inclusive reaction a + b --* c + X. 
(b) A high-energy limit (Sab/Sab~ ~ ~ with Sbe- fixed) of the amplitude in fig. 2a. 

The reggeon-particle amplitude that we shall be concerned with here (fig. 1) is 
somewhat more general than the one encountered in inclusive distributions (fig. 
2b). In the case of  fig. 2b there is only one helicity amplitude contributing to the 
leading term, namely the one corresponding to a maximum helicity flip of  the 
reggeons [10]. By contrast,  there are many helicity states of  the reggeon contribu- 
ting [ 11 ] in fig. I. The dependence on the helicity in this case can alternatively be 
seen as a dependence on the variable r = ScdSde/Sab. The reggeon-particle ampli tude 
in fig. 1 also depends on the momentum transfer Sa~. In the case of  the inclusive 
reaction in fig. 2 the corresponding variables are equal to zero. 

The structure of  the amplitude for a + b -+ c + d + e in the double-Regge limit 
(Scd -+ oo in fig. 1 ) is already well-known [ I 0, 11 ]. In this limit the ampli tude 
decomposes into a sum of  two terms, with cuts in Scd and in Sde, respectively. We 
shall in the following be concerned only with a part of the five-point ampli tude 
which in the double-Regge limit gives the first term (with a cut in Scd). This is also 
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the part which contains the poles in she (when the reggeon is on-shell) and, accor- 
ding to the Steinmann relations [ 12], the normal threshold singularities and 
resonances in Scd. 

We investigate the singularity structure of  this part of  the amplitude in the 
single-Regge limit (Sod finite) using the dual resonance model (DRM) and a pertur- 
bation theory model. We find that when K = 0 the reggeon-particle anaplitude has 
the singularity structure of a normal four-point amplitude. 

The FESR which follow from this analytic structure relate the absorptive part 
of  the low Sod region to the first part of the double-Regge vertex. In the same way 
one can relate the other part of  the double-Regge vertex to the low Sde region. 

When K ~ 0 the reggeon-particle amplitude has singularities which are not present 
in normal four-point amplitudes. These singularities do not, however, contribute 
to the leading term in the discontinuity as Scd ~ oo. The effect of  the new singulari- 
ties in the FESR is therefore that of an additional term which is independent of  
the cut-off. 

In sect. 2 we discuss the structure of  the amplitude in the double Regge limit. 
The single Regge limit is considered in sect. 3, where we investigate the analytic 
structure of  two models, the dual resonance model and a perturbation theory 
model. The structure of  the two models turns out to be very similar. In sect. 4 we 
discuss the modifications due to left-hand singularities and signature. All essential 
properties found in sect. 3 remain unaltered for the signatured amplitudes. The 
FESR are derived in sect. 5 and some applications are considered in sect. 6. 

2. The double-Regge limit 

We shall begin our investigation of  the analytic structure of  the five-point 
amplitude by considering the double-R'egge limit (fig. 3). This is defined by letting 

Sab, Sod, Sd e -+ oo keeping Sa~, Sb~- and K = ScdSde/Sab fixed. The structure of  the 
amplitude in this limit has been investigated by several authors [10, 11, 13]. It has 
been shown that an amolitude with only right-hand cuts in the asymptotic variables 
takes the form* 

T = (-Sab)abe- (-- .Scd)aag - abe g I (Sb~-, Sag ; K) 

+ (--Sab)aa ~- (--Sde) ab~ - aa~- V2(sai- ' Sbe ; K) , (1) 

where abe  -- o~(Sbe-), etc. The vertex functions V l and V 2 are entire functions of  K. 
The important  feature of  the decomposit ion of  T in eq. ( l )  is that only the 

first (second) term has a discontinuity in Scd(Sde ). If, according to duality, the 
Regge terms in eq. ( I )  are "buil t  up" from resonances in Scd and Sde we therefore 

* This is true for amplitudes corresponding to planar Feynman diagrams and for planar dual 
models. For an example of the structure of a non-planax model see ref. [ 14 ]. 
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O. ~ C  

Fig. 3. The double Regge limit of the process a + b --* c + d + e. 

expect the first term in eq. (1) to be connected with the resonances in seA and the 

second term with resonances in Sde. In fact, the residue of a resonance in sea is a poly. 
nomial in Sde and thus cannot contribute to the discontinuity in Sde (i.e. to the sec- 
ond term in eq. (I)) .  The first term in eq. (1) also contains the poles in abe when the 
reggeon i goes on-shell. From the point of view of duality in the system a + i ~  c ÷ d 
we therefore should consider only a part of the five-point amplitude T, which in the 
double-Regge limit gives the first term in eq. ( 1 ). 

In deriving the FESR we shall start from a dispersion relation in sea keeping 
Sab , Sag , Sbe- and K fixed (note that the limit Sab -," oo has aheady been taken as in 
fig. 1). The reason for keeping K fixed is that we want the high-energy limit of the 
reggeon-particle amplitude (Sod --', oo) to be related to the double-Regge limit of the 
five-point function. 

The variable Sde can be expressed in terms of the independent variables as 

K Sab 
Sdc = - -  • ( 2 )  

Scd 

substituting eq. (2) into the expression (1) for Twe get 

T = ( - S a b ) a b e  (--Scd )aae  - C~be [Vl  ( S b ¢ , S a e  ;K) + ( - K ) a b ~  - aac  V~(sz ac-,Sb~-'K)]. 

(3) 

Both terms in eq. (3) now have a cut in seA, due to the relation (2). However, 
as discussed above only the first term can be dual to resonances in seA. The second 
term can be eliminated in either of two ways: 

(i) By extrapolating to K = 0. If abe- - aac- > 0 the second term in eq. (3) 
vanishes. As we shall see below the situation is analogous in the single-Regge limit. 
Thus at ~ = 0 the reggeon-particle amplitude has only normal four-point singularities 

in Scd and a FESR can be derived. The FESR can be continued to abe- - aae < 0 
by subtracting out tile term which is ~ngular when K ~ 0. 

(i.i) By considering the amplitude T : 

1 [e in(c tb~  -- ~ae) T(Sde + ie) 
] '  = 2i sin rr (abe- - aae)  

- e -  in  (ab~ - aa~-) T(Sd e _ i e ) l  • (4) 
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In eq. (4), T(Sde -+ ic)  is tile ampl i tude  ob ta ined  in the single-Regge l imit  
let t ing Sde ~ oo above (+ ie) or below (-- ie) its cut. All o ther  variables are to be 
evaluated in their physical  limits.  It follows f rom eq. (1) or eq. (3) that  in the 
double-Regge limit 

= ( -  Sab) abe- ( -  Scd) aa~- - a b e  V 1 (SbE , Sa~- ; K) .  (5) 

In the next  sect ion we consider  the singulari ty s t ructure  of  ~P in the single Regge 
limit.  It turns out  that '  ~ has certain singularities in Sod which are not  present in 
normal  tour-point  ampli tudes .  These come from the term T(Sde - ie) in eq. (4), 
where the ampl i tude  T is evaluated in an unphysical  limit. Such singularities cannot  
be de te rmined  from exper imenta l  data. 

The addi t ional  singularit ies do not,  however,  con t r ibu te  to the leading term (5) 
o f  ]g in the double-Regge limit.  This term is buil t  up comple te ly  by the ordinary  
singularities in Scd: The only  effect o f  the extra  singularities in the F E S R  is there- 
fore to in t roduce  a constant  (i.e. cu t -of f  independen t )  term on the 1.h.s. o f  the sum 
rule. 

This term vanishes in the l imit  K ~ 0, so that  consis tency with (i) is achieved. 

3. The single-Regge l imit  

In this sect ion we shall discuss the proper t ies  of  the DRM and a pe r tu rba t ion  
theory model  in the single-Regge limit shown in fig. 1. We consider  ampl i tudes  
with only r ight-hand singularities, signature being in t roduced  in the next  section. 

3.1. The dual resonance model 

In the single-Regge limit of  fig. 1 the B 5 ampl i tude  can be expressed in terms 
of  the hypergeomet r ic  funct ion* F(a, b; c; z) 

B 5 = r ( -  O~bE-) ( -  ~ab )ab~ [B4(--O~cd , - ~a~- + °~b~) 

Scd] 

× B 4 ( - ~ a e - , - - a b ~  + a a e ) F ( - a a e , - a c d  - -aae +abe-  ; 1 - aae- 

+ a b e - : ~ ) ]  • 

F rom this expression we can see the following. 

(i) If  K = 0 and ab~ - ~ae > O, 

B5 = r(~_ OrbS. ) (._ 0tab)abe" B4 ( _  Crcd ' _ tVa~. + ab ~ )" 

(6) 

(7) 

* See ref. [ 15 ]. The definition of the hypergeometric function is given in ref. [ 16 ]. 
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N ;Z I< 

Fig. 4. The singularity structure in Scd of the amplitude 7' in the dual resonance model. The 
crosses correspond Io poles and the thick line to a cut. 

In this case the reggeon-particle ampl i tude  is given by a B 4 funct ion.  Tile derivation 

o f  the F E S R  can be done as for a four a four-point  function.  If abe  -- aa~- ' (  0 but ,  

say, abe- - aa~ )" - 1, we can consider  the ampli tude 

B;=B 5 --( ~- -~abe-aac l~14( - -aac , - -ab~ + a a c ) F  ( a b e - ) ( - a a b )  abe- (8) 
\Scd ] 

As K ~ 0 we find that B;  reduces to a B 4 funct ion as in eq. (7). The F E S R  

which were derived for abe- -- aa~ ~ 0 can thus be cont inued to abe- - aa~ ( 0 

by substract ing out the terms which are singular when K ~ 0. In the double-Regge 

limit (3) this means that only the first (V I ) o f  the two terms is present.  The FESR 

are therefore  going to relate an integral over the absorptive part in Sod to the first 

term in the double-Regge limit ,  as we already ant ic ipated above. 

(ii) When • :/: 0 we can use the def ini t ion (4) to calculate 7 ~. The expression (6) 

for T is real when the variables aab and ade are negative. Cont inuing ade to positive 

values, using eq. (2) and the -+ ie  prescript ion at the branch point  ade = 0, we get 

= F ( -  ab~ ) ( -  aab)abeB4(  - acd , -- aa~- + abe ) 

X F  - a b ~ - , - a c d ; i  - - a b e  +aa~- ; . (9) 

F r o m  eq. (9) one can direct ly  see the singularity s t ructure of  ~P in Scd (fig. 4). 

There  is a series o f  poles corresponding to resonances at acd = n, n = 0, 1 , 2 , .  .... 

In addi t ion the F- func t ion  gives rise to a cut 0 < Sod ~< ~. This cut corresponds to 

a singularity o f B  5 on an unphysical  sheet in Sde. Thus it cannot  be de termined  
direct ly f rom exper imenta l  data. However ,  we may still derive a useful F E S R  from 

the singularity s t ructure  o f  fig. 4. The cut  0 ~< Scd ~< K gives in the FESR rise to a 

term which is independen t  o f  the cut-off.  It can therefore  be e l iminated by varying 
the cut-off .  

3.2. The perturbation theory model 

Consider the five-point funct ion  T generated by a sum of  Feynman  diagrams in 
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c 

¢t2 

b .i -L , 
b f ~ -'.....¢ 

(a) (b) 
Fig. 5. (a) Diagrammatic representation of the perturbation theory model considered in the 
text. The internal lines correspond to scalar particles and the blobs T 1 and 7"2 represent sums 
of planar Feynman diagrams. (b) The same amplitude as in fig. 5a; the thick lines indicate the 
energies which are dispersed in. 

q~3 theory*.  We may describe the ampl i tude  by the diagram in fig. 5a, where the 
blobs  T 1 and T 2 represent  sums of  planar  F e y m a n  diagrams. We assume that  the 
ampl i tudes  T 1 and T 2 satisfy unsubt rac ted  dispersion relations: 

Tl((Pa + k)2,  Sa~_ ) = ; ° l ( S l '  Sac-)dSl , (10) 

0 (Pa + k )  2 - S l  

and similarly for the ampl i tude  T 2. We shall also assume that  T 1 and T 2 are Regge 

behaved at high energy. Thus as s t ~ o% 

O l ( S l , S a ~ )  ~-aulv tsa~)saac-1 ' (11)  

with a similar re lat ion for 0 2 when s 2 -+ ~o. 
The five-point ampl i tude  T of  fig. 5a can now be expressed as (we take the mass 

o f  the propagat ing  part icles to be / / )  

T :  - ig f (ol(s 1 ,Sa~-) o 2 ( s 2 , s b ~ )  d s l d s 2 d 4 k } { [ k 2  - / / 2 1  [(k +Pa - P c  )2 

- / / 2 1  [(k + P e - P b )  2 _ / / 2 ]  [(k +pa )  2 - S l ]  [ ( k - p b )  2 - s 2 l }  -1 . (12)  

Apar t  f rom the in tegra t ions  over s I and s 2, T has the s t ructure  of  a simple box  
diagram (fig. 5b). Conver t ing to the a - represen ta t ion  [1 ], the in tegrat ion over the 

loop  m o m e n t u m  can be done.  We get then 

O l ( S l , S a . c ) o 2 ( s 2 , s b ~ ) d S l d S  2 [ I  dcti6 a i -- 1 
i = 1 "= 

T = 297r2f , (13)  
[d + ie ] 3 

* For a review of the high-energy behaviour of Feynman diagrams, see ref. [ l ]. Models similar to 
that presented here have been studied by, for example, Drummond et al. [ 11 ] and Sanda [6 I. 
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o~1 J____..~ 2 

b ~  73 ~ d 

Fig. 6. The single-Regge limit of the amplitude shown in fig. 5. 

where 

d = o~la2Sac- + O~la3Sb~- + t:~3a4Scd + a2aSsde  + a4a5Sab 

+ a l a4 m 2 + a 2 a  4m2c + a 2 a  3 m 2 + a 3 a  5 m 2 + a l a 5 m 2 

-- (or I + a  2 + a3)/a2 -- a4s  I - a 5 s  2 • (14)  

To find the s t ructure  of  T i n  the single Regge l imit  of  fig. 1 we let Sab -~ _co 
and Sde -+ --co keeping Sde/Sab fixed. When - l < a b e  < 0 the leading con t r ibu t ion  
to the integral  in eq. ( l  3) comes from large s 2. Subs t i tu t ing  the Regge 'express ion 
( l  1) for o 2 we find ( the  der ivat ion is given in the appendix)  

/32($be-) d$1 Ol(S 1 , Sap) N d R. i=l 
T = grr 3 sl~n/rabE 0 0 i=1 (d '  + i e )  2 

X (-- a2Sde -- a4Sab) c~b~- , (15)  

where d '  is ob ta ined  f rom d by  put t ing  a 5 = 0: 

d '  = a I a 2 Sap + a I a 3 Sbb- + a3o~ 4 Sod + a I a 4 m 2 + a 2 a  4 m 2 a c 
+ a 2 a 3  m 2  -- ( a  1 + a 2 + ct3)/a2 - a 4 s  1 . (16)  

The s t ructure  o f  the ampl i tude  T in eq. (15)  is essential ly that  o f  the box  dia- 
gram in fig. 6, the reggeon being t rea ted  as a scalar part icle.  The only difference is 
that  the in tegrand is mul t ip l ied  by a factor  ( -  ot2Sde - ct4Sab )abe-, which describes 
the corre la t ions  due to the Reggeon spin. It is interest ing to note  that  the ampli- 
t u d e  (15)  looks  very similar to the DRM in this respect  [17].  

Consider  now the l imit  r ~ 0. This implies  $de --} 0 in eq. ( 1 5), so that  the ext ra  
factor  in the in tegrand reduces to ( -  a 4 $ab) abe-. The singulari ty s t ructure  of  T is 
then de te rmined  by  the zeroes of  the denomina to r  funct ion d '  in eq. (15).  Hence 
the reggeon-part ic le  ampl i tude  in fig. 6 has the singulari ty s t ructure  of  a normal  
four-point  funct ion.  
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We must still verify that the integral over s 1 in eq. (15) converges. The behaviour 
of  o 1 (s I , Sac ) at large s 1 is given by eq. (1 1) and ensures convergence of the re- 
presentation (15) when abe  -- aaV > 0. If abe- - aae < 0 there is a singular term 
in Twhen  K ~ 0, proport ional  to ( - K )  ab~ aae .  The singularity does not depend 
on Sod and is therefore the same as the singularity in the double-Regge limit, eq. 
(3). As in the case of the DRM above we can subtract this singularity from the 
amplitude. The amplitude has then, for all values of abe aae,  only the singulari- 
ties which come from the vardshing of  the denominator  function d' in eq. (15). 

I f~  ~ 0 it can readily be seen that the amplitude 7 TM, defined by eqs. (4) and 
(I  5), has singularities in Sod which are not associated with zeroes of  the denomina- 
tor function d'. However, as in the case of  the DRM these new singularities are not 
present in the leading term when Sc~-~ oo. in this limit the structure of T is given 
by eq. (3). "lqae only singularities of  T(eq.  (5)) are those of  the first term in eq. (3), 
and correspond to normal singularities in Sod (i.e. to zeroes of  the denominator  func- 

tion). 
If  follows that also when K 4 :0  the properties of the perturbation theory mod- 

el (12) are similar to those of  the DRM. An FESR can be derived, to which the 
new singularities contribute a term which does not depend on the cut-off. This 
term goes to zero in the limit K --, 0. 

4. Signature 

Before we can write down tile FESR we should construct amplitudes with 
definite signature in the bE and aT channels. Such amplitudes are most conveniently 
described using variables which are symmetric (or antisymmetric)  under crossing. 
We shall begin be defining as set of  such variables. We then discuss the effects of  
signature in the double Regge limit. Finally we use the DRM to study the proper- 
ties of  the signatured amplitude in the single-Regge limit. 

4.1. Crossing-symmetric variables 

In the double-Regge limit (fig. 3) all the large variables have simple properties 
uiider crossing. For  example under line reversal in the a~- channel (i.e. a ~ ~-) Sab = 
--sc- b. This is no longer true in the single Regge limit (fig. 1). The three large varia- 

bles Sab, S~- b and Sde are related through 

Sd e = Sa b + s~ b (17) 

(we ignore terms like Scd/Sab which vanish in the single-Regge limit). From eq. (17) 
we can see that Sde is symmetric when a ~ E-. Instead Of Sab we shall choose as 
our independent variable the combinat ion o, which is antisymmetric when a ~ ~-: 

o = ~ (Sab -- Seb ) .  (18) 
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Both Sde and o are antisymmetric under b ~ ~. 
In analogy with four-point amplitudes we shall use the crossingodd variable v, 

v = (Pa + P c ) " P d  = Sod + ~ (Sa~- - s lo~  " 2m2 - rn2) ,  (19) 

to describe the reggeon-particle amplitude (instead of  sod). Finally we define the 
variable 

OSde 
K~ = - - ( 2 0 )  

0 

which is symmetric both under a +--~ ~- and b +--+ F, and replaces K =ScdSde/Sab used 
above. 

4. 2. The double-Regge limit 

Let Tr~ r2 be an amplitude with signature 7-1 in the bE channel and 7-2 in the aC: 
channel. This amplitude can be constructed by adding four terms as in fig. 7, where 
a cross indicates that the reggeon line is to be twisted. The double-Regge limit of  
the ampli tude in fig. 7a is given in eq. (1). The other amplitudes in fig..7 are similar. 
except that they have left-hand cuts in some of  the large variables. The full ampli- 
tude is then [13, 18, 19] 

Trl~'2 = [ ( - ° ) a b e -  +7"1(O) abe- ] [ ( - ° )  ~'a~ - abe- + T17-2(o)aac --abe-] Vl(Sb~,Sa~ ;K) 

+ [ ( -  o) eaE + r2(o)aaE ] 1(-  Sde)~'b5 - aae 

+ 7-1 7-2(Sde)ab~ - aa~- ] g2(sa~. ' $b~-; K) .  (21) 

The structure of  Trot2 in the double-Regge limit is similar to that of  the ampli- 
tude T (eq. (1)). There are two terms in eq. (21 ), the first of  which has cuts in o 
and v, and the second in o and Sde. As before, only the first term in eq. (21) can be 
dual to resonances in v. The second term may be eliminated either by taking the 
limit K s ~ 0 (which implies Sde ~ 0 in eq. (17)) or, ifK s 4: 0, by defining a new 

amplitude ~ r l  r2" 
Analogously to what was done in sect. 2, we define ~'r~ r2 by an analytic con- 

t inuation in Sde. In the physical limit of  the amplitude Trt rz all variables approach 
their cuts from above (+ie).  We denote this limit of  Trl r2 by Tzl r2 (Sde+ ie). We 
now define the limit Trl r2 ( S d e -  ie),  where all variables approach their cuts from 
above except Sde , which approaches from below ( -  ie). Tr~ r2 (Sde - ie) can be ob- 
tained from the physical limit by continuig Sde along a circle, keeping o and v 
fixed. This is illustrated in fig. 8 for the case of  a term with a righthand cut in Sde. 

When continuing Sde we have to take care not to encircle the branch points at 
Sab = 0 and Sc-- b = 0, as these variables would then be evaluated in an unphysical 
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o C Q C O C Q C 

b ~ ¢  b /  ~ " ' -  ¢ 

Fig. 7. The four terms which have to be added to obtain a definite signature rl in the bE- chan- 
nel and r 2 in the a~ channel. A cross indicates that the reggeon line is to be twisted. 

limit.  It fol lows f rom eqs. (17)  and (18)  that  this is ensured if ISde/O I < 2 during 
the cont inua t ion .  This restr ict ion is o f  course,  only  relevant in the single-Regge 
limit.  

The def in i t ion  of  ~ r l  r2 is the same as that  of  9, given by eq. (4): 

1 [e/rr(abE- - aa~)Trtr2(Sde + ie) 
~ r l  r2 = 2/ :s in  n(%E- - O~ae ) 

- e -  i,~(abE- - aae)Tr I r2 (Sde -- ie)]  . (22)  

In the double-Regge l imit  only  the first term of  Trt r2 (eq. (21))  cont r ibu tes  to 

~ , r  I ,r 2 " 

~rtr2 = [(_o)~bE- + r l ( o )  ~bE-] [ ( - - v ) a a e  - a b e  

+ r I r2(u)aag - abe: ] Vl(Sbg ' Sag ; K) . (23)  

We therefore  expect  that  the v-discont inui ty  of  ~'rt r2 in eq. (23)  is dual  to normal  
singularit ies ( resonances)  in v. 

4. 3. The single-Regge limit 

We shall now investigate the s t ructure  of  ~'ri r2 in the single-Regge l imit  (fig. 1) 
using the DRM. In this model  Trl r2 is a sum of  four B 5 funct ions  as in fig. 7. A 
twist on a reggeon line indicates  that  the order ing of  two part icles is to be reversed. 

The ampl i tude  for the diagram in fig. 7a is given in eq. (6),  and the other  three 
ampl i tudes  can be ob ta ined  by replacing a *--+ ~, b ~ E. All ampl i tudes  consist of  
two terms,  o f  which only the first con t r ibu tes  to ~ r ,  r2" The expression for ~Prt r2 
in the single-Regge l imit  is thus 

~,~ .  = p( -%E-) [ ( -aVbe + q(o)~be] 

I ~¢s "~abE- + abE" ) F  ( -  °~bE- --°%d; 1 + aa~ ; " x [ ( l + ~ !  a4(-%d,-%~ ' - % ~  l-q-~/~l 

+ r l r  2 l --2--0-] B 4 ( - ~ a a , - ° ~ a e  - +~b~ ) F  --°%~,--°ead;l--~XbE- + ~ a e ;  i_~Ks]O~ 

(24) 
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Fig. 8. The path of continuation in Sde used in the definition of T_ _ (Sde - ie). The singularity 
t l  ~2 

structure is that of an amplitude with a right-hand cut in Sde. Note that the branch pomt of an 
amplitude with a left-hand cut in Sde is similarly encircled. 

-~K s 
I 

Fig. 9. The singularity structure in Scd of the signatured amplitude ~ l z 2  in the dual resonance 
model. Crosses correspond to poles and the thick line to a cut. 

. 'F,  

b""" b • 

Fig. 10. The two B s functions given by eq. (25) in the text. 

I f  in  eq. ( 24 )  we let  K s ~ 0 we f ind tha t  ~'~'1 zz reduces  to a sum o f B  4 funct ions .  

The  on ly  s ingular i t ies  o f  ~'T~ T2 in v are then  the  resonance  poles. When K s v 6 0 

K s (see fig. 9). Hence  the  ~'rl  r2 has,  in add i t ion ,  a cut  in u for -- ~ K s ~ u ~< 
p roper t i e s  o f  the  s igna tured  a m p l i t u d e  are very similar  to those  o f  the non-signa-  

tu red  a m p l i t u d e  tha t  we discussed in the  previous  sect ion.  

There  are two more  B 5 func t i ons  which  c o n t r i b u t e  to  the single-Regge l imit ,  in 

add i t i on  to the  four  s h o w n  in fig. 7. They  are s h o w n  in fig. 10. D e n o t i n g  the i r  

c o m b i n e d  c o n t r i b u t i o n  by  Bs(s ,  u) we have  
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1 Ks] ab~ 
Bs(s ,u)  = F ( - a b ~ - ) [ ( - o )  ab~ + r I (o) ~b~] l + ~-~-] 

X B 4 ( - - a c d , - a a i l ) F  Ctbe-'- acd;--  acd - aad;  1 +½Ks~O/ " (25) 

The singularity structure o f B s ( s , u  ) is the same as that of  l"r~T2 in eq. (24) and 
shown in fig. 9. Bs(s ,u )  is symmetric under a ~ g and vanishes exponentially 
[-19] in the double-Regge limit. It must therefore be superconvergent. 

We have now investigated all amplitudes that contribute to the single-Regge 
limit in. the DRM. The properties of  the amplitudes with definite signature in the 
bg and ag channels are completely analogous to the properties of  the amplitude 
with only right-hand singularities, discussed in sect. 3. The conclusions about the 
singularity structure which we reached in that section are therefore valid for the 
full amplitude with right- and left-hand singularities. 

A similar analysis can be done using the perturbation theory model described 
in sect. 3. The conclusions reached are the same as for the DRM. 

5. The finite-energy sum rules 

We define the reggeon-particle amplitude f i (v ,  Sac, Sbe , Ks) for the process 
a + i --> c + d (fig. l) by the relation 

T i + e -  irrai(Sbe ) 

~i = J3~- (Sb~-) sin/ro~i(Sb~_ ) Oai(Sbe )f/ . (26) 

In eq. (26), ~i is the amplitude related as in eq. (22) to the amplitude ~ for the 
process a + b ~ c + d + e, the reggeon i being exchanged in the b~ channel (fig. 1). 
j3~- is the reggeon-particle-particle vertex function, and the definition of  the vari-_ 
ables o, v and K s is given in eqs. (18), (19) and (20). 

From our discussion above we expect that f/, as a function of  v, has the normal 
singularities of  a four-point function when K s = 0. If g s 4 :0  there are additional 
singularities which do not, however, contribute to the limit I vl -* '~ o f f  i. In the 
DRM these additional singularities take the form of a cut - ~ r s ~ v ~ } K s (see 
fig. 9). 

According to (23) and 26) the behaviour o f f / a s  o ~ ,~ is 

f ir  / + exp 1-  ilr(c~.(Sa~ ) - o~.(Sbe)) ] 

f / =  ~ ~ e  (Sae) sin zr [o~/(Sb~- ) -- al-(sa~)] j. 

X Ua] (sa~-) - ai(Sbe) V//.d(sb~, Sap ; K) , (27) 
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where I/id is the part of  the reggeon (i) -- reggeon (]) - particle (d) vertex which is 
multiplied by v (i.e. V 1 in eq. (21)). 

The FESR for the amplitude f /can now be derived in the standard way 13, 4]. 
They are 

N 

c~n)(Sbe ,sac.; Ks) + f dv u n lm [ ] ; ( v + i e ) + ( - 1 ) n + l f i  ( -  v - ie)] 

OO 

: ~ [1+(--1) n+l Tirj] ~-(Sa~-)vid(sb~,SaE'K s) 
/ 

/VCj(SaV) - ai (sbE)  + n + 1 
× (28) 

~/(Sac) ¢xi(sbo-)+n+l ' 

where 
1 

Im f/(v -+ ie)  = ~ [  f / ( v  +- ie,  Sac,  She, Ks ) -- f / ( v  T- ie,  Sa~ , SbE , Ks) ] . 

The integr',d in eq. (28) is over the normal four-point singularities o f t  I- (i.e. pole 
terms, resonances, etc.). The additional singularities off i  contribute the term 
c~ n). 

As discussed in the previous sections, c~n)(sbE, Sac ; Ks) vanishes as K s ~ 0. In 
the DRM it is readily seen that 

c ~ " ) ( s b e  - , s . , ~ ;  K s )  = (K~)  '~ ÷ ] as K s ~ 0 . (29) 

For small K s the higher moment sum rules are thus less sensitive to the unknown 
term c! n). 

l 

6. Applications 

At present the only way of  obtaining lm f/(v) in eq. (28) from experimental 
data is to assume that the absorptive part is dominated by the resonance contribu- 
tions. The consistency of  eq. (28) with the data can then be tested by varying the 
cut-offN. This should be done at several values ofK s and n, so that the restriction 
(29) can be applied. 

Such an application of  the FESR is analogous to a recent analysis [8] of  quasi- 
two-body reactions using the inclusive FMSR. However, it should give considerably 
more information, as not only the total production cross section of  the resonances 
but also their decay distributions can be correlated. In addition, one can avoid 
certain resonances whose production mechanisms are not clearly understood (e.g., 
Q may contribute to K + f ~  anything but not to K + f ~  K + lr). 
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In general the two parts of  the double-Regge vertex have to be generated 
separately by summing over resonances in Sod and in Sde (and their crossed chan- 
nels). In some applications, however, the two parts can be related to each other 
by excha~,gc-degeneracy arguments. This happens in particular when particle d is a 
n-meson and the regge(ms exchanged are any of  the tbur meson trajectors f-p-w- 
A 2. As we think this case may be of  practical interest we shall discuss it in some 
detail here. 

Consider the system abcde = K-K+K+rr  - ~0 in the double-Regge limit as in 
fig. 1 la  (a l  1 particles are treated as incoming). As in sect. 4 we shall assume that 
the contr ibut ion of  a given exchange (cS.(Sb~), aj(Sae)) to the amplitude T is of  
the form 

T(i , ] )  = [ ( - o )  abe- + ri oabe ] [ ( - v )  aa~ - '~be + TirjaaE - a b e ]  V1 (i,]) 

+ [ ( - o )  aa~ +7"]G aaE ] [ ( -Sde)  abV - aac + 7".7".S ab[  - aac-] V2(J,i) (30) t l  de 

The full amplitude is 

T = T(A~,  f) + T(A~,  pO) + T(p+,  w)  + T ( p  +, AO). (31) 

By drawing the duality diagrams it is easy to see that the only planar diagram 
is the one where the particles a, b, c, d, e are ordered as in fig. 11 a. This means that 
the full ampli tude T should have only a right-hand cut in each of  the variables o, 
v and Sde. Hence six of  the eight terms in eq. (30) have to cancel in the sum (31). 
This gives six relations between the vertex functions Vk(i, j),  k = 1,2. 

Six further relations can be obtained by considering the system abcde = 
K÷K - K07r-K + (fig. 1 l b). Combined with isospin mvariance these relations imply 
that all non-zero vertex functions Vk(i,] ) are degenerate (k = 1,2):  

Vk(A+2 , f) = Vk(P +, w )  = Vk(A+2 , po) 

- Vk(f, A~) = - Vk(w,  p+) = - Vk(P °, A~),  k = 1 ,2  

Finally, observing that the process in fig. 1 la  is identical to the one in fig. l lb,  

C) = V2(A , O. 

It follows that all the vertex functions are related. 
The degeneracy of  the vertex functions means that the full double-Regge 

vertex can be obtained by summing the resonances in only one system, e.g. in Sod. 
Consistency with the sum of  resonance in the other system (Sde) then requires 
that the two sets of  resonances must be related. These predictions make the applica- 
tion of  the FESR particularly interesting to reactions where f, P, co or A 2 are the 

dominating exchanges. 
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Appendix 

In this appendix we shall derive the explicit expressions for the perturbation 
theory amplitude T in the single- and double-Regge limits. The definition of  T in 
the non-asymptotic region is given by eqs. (13) and (14). We shall assume that 
--1 < a b e ,  aa~- <( 0. It is straightforward to continue the expressions to arbitrary 
values of  the momentum transfers. 

In the single Regge limit Sab ~ --0% Sde ~ - o o  while Sde/Sab , Sod , Sb~- and Sae- 
remain fixed. The leading contribution to the integral in eq. (13) comes from 
large s 2. Substituting the leading behaviour of  o 2, 

O2(S 2, Sb~-) --~/32(Sb~-)s~be- , s2 ~ oo, (A.1) 

in eq. (13), the integral over s 2 can be explicitly done. We get 

T = grr3/32(Sb~- ) ab~ (ab~ -- l ) e_-- irrabe 
sin/rabF 

X ; o,(Sl,Sag)Cls I f [] am. "=' 
0 0 i= 1 [d" +ie] 2-abe- (A.2) 

where 

d "  = a5(ct2Sde + a4Sab ) + ala2Sa~ + ala2Sb~- 

+ a3a4Scd + t~ 1 a 4 m 2 +  a2a4m2 + a2a3m2 + ot.2a, rn 2 

+ a l a 5 m  2 - (a ! + a 2 + a3)/.t2 - a4s I . (A.3) 

Because the large variables Sde and $ab both are multiplied by a 5 in eq. (A.3), 
the leading contribution to T comes from small a 5. If we scale a5, 

X 
a 5 - , (A.4) 

a2Sde + a4Sab 

the integral over x can be extended from zero to infinity. The expression for T is 
then 
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irrab~ 
e -  

T = gTr3(32(Sbe)ab~ (abe 1 ) J _ 7 dis I Ol(Sl ,Sa~.  ) 
sin rrab~- 0 

X F J i~I 1 d0~i6 O~i-- 1 (-a2Sde--Ot4Sab) abe- d x -  
o = - o [ d ' - x + i e ]  2 - ' ~ b e  

(A.5) 

where the expression tbr d' is given in eq. (16). The integral over x in (A.5) can 
be done explicitly and we then obtain the expression (15) for Tin the single-Regge 
limit. 

Next consider the double-Regge limit. We have to let Scd ~ oo keeping Sae, Sb~: 
and K = ScdSde/Sab fixed in the expression (15) for T. Again, the dominant contri- 
bution comes from large s I . Substituting the Regge behaviour (11) of o I we get 

/31 (Sa~-)/~2(Sb¢) 
T = - gTr 4 

sin 7raat :- sin Zrabiy 

, 4  

('1 "= 

ot 4 aa~- - 1 
X ( -a2Sde  -- a4Sab) ~b6- , (A.6) 

(d'" + ie) 1 - % e -  

where 

d ' "  = o~3a4Scd + 0~1 o¢2SaE + alO~3Sb~- + a l a 4 m  ~ 

+a2a4  m2 + a2o~3md 2 - (a I + a  2 + a3)/a2 . c 

If we define the new integration variable z by 

O~2K 
~ 4 = - - Z ,  Scd 

we get for the leading term in T, 

T -gTr 4 J31(sac)J32(sb~) (--Sab) aae (-.Sde) ~b~ - C~a~ e -  in%-c- 
= ~ a c -  sin rraat- sin nabe- 

(A.7) 

(A.8) 

i 3  3 f 
× ; ~ dais ( / ~ l ° 7 " - l )  a~be- -~ac  dzz - % ~ - 1  

0 = 0 

(1 + z) abe 

( f f  + a 2 a 3 K z  +ie) 1 -aa~: 

(A.9) 

where 
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K" K" K" K* 

'1"1""  ~ ' W - i  

K " ' '~ ' ' -  ~ K* K-  K" 

(a) (b) 
Fig. 11. (a) The double-Regge limit of the process K- + K' • K- + rr ÷ + K c. All particles are 
treated as incoming. (b) The same reaction as in fig. 1 la, but with a change in the particle 
ordering: a .... b, c ~ e. 

J = a la2Sa~  :- + a l a 3 s b e  +a2a3m2d - - (a  I + a 2 + a3)/a2 (A.10)  

The denomina to r  ( d  + a2a 3 gz + ie) I -C'a~ in (Ag)  can be changed into an exponen-  
tial using the formula 

(z + ie) u 

e- i r ru  ; eX(Z+ie)~ g - I  dX 
r(~) 

0 
(A. ll) 

The result ing express ion for T can then be expressed in terms o f  the conf luent  
hypergeomet r i c  funct ion* qJ(a, b ;x ) .  This funct ion can be wri t ten  [20] as a sum 
of  two entire funct ions  ¢ (a ,  b; x) ,  which establishes the s t ructure  ( 1 ) of  T in the 
double-Regge l imit .  The expl ici t  express ion for the vertex funct ion V I in eq. ( I )  
is 

131(Sae)132(Sb~-) r (ab~-  - aa~- ) 
V 1 (Sb~-, Sag ; K) = - g u  4 sin 7raae- sin rrabe- r (  .aae- ) 

~ ~t (i_~ 1 !) ot3a~. __abe_ ; X _ab~  X(d.+ie  ) X (-I do~i5 a / -  d e 
0 i=1 - 0 

X ¢ ( - - a b e - ,  aa~ - -abe-  + 1; - a2c~ 3 ~g).  (A.12)  

The ampl i tude  T being symmetr ic ,  V 1 and V 2 are the same funct ions  in this 
model .  
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Abstract: Duality leads to exchange degeneracy for Regge trajectorles, and emp,ri- 
cal evidence is presented that such a degenerate scheme is not satisfied. A sub- 
stantial improvement results from the inclusion of Regge cut corrections. These 
corrections are discussed, separating for clarity the P and non-P contributions 
to the cut. Application is made topalrs of line reversed reactlons such as KN and 
KN charge exchange, and Ir+p --~ Kt~ + and K-p --~ ~'-~+. 

I. INTRODUCTION 

The concept of the duality of resonance  poles  with Regge poles  [1] leads 
to many consequences ,  although the concept can at best  be approximate  for  
the physical  amplitude because  of the l imitat ions of pole dominance and be-  
cause the energy average  n e c e s s a r y  for the application of duality is impre -  
cise.  In such a dual scheme,  the absence of resonance  poles  in channels 
with exotic quantum numbers  leads  [2] to exchange degenera te  Regge t r a -  
j ec to r i e s  which have res idue  functions re la ted  in magnitude and have the 
mechanism of nonsense-choos ing  at the in tercept  of the t r a j ec to ry  with ze ro  
and negative integers.  However,  the empir ica l  p, 00, P '  and A 2 t r a j ec to -  
r i e s  de termined f rom analyzing nN, KN and nN ~ ~?N data [3] a re  not dege-  
nerate ,  and have the mechanism of sense-choos ing  with a special  c r o s s  
over  zero  for p and w, and the mechanism of no-compensa t ion  for  the P ' .  
As previous  calculat ions have shown, [4] the inclusion of Regge cuts  in an 
exchange degenera te  scheme tends to r e s t o r e  agreement  with experiment.  
We d iscuss  the effect of such cuts in a qualitative manner  which avoids the 
d i f ferences  of detail between formula t ions  of the i r  contribution. In pa r t i cu -  
lar  we d iscuss  separa te ly  the dominant effects f rom the asymptot ic  imagi -  
nary elast ic sca t ter ing amplitude (P) and those f rom the non-asymptot ic  
pole contributions such as  P ' ,  w, p and A 2. We i l lus t ra te  the consequences  
of such cuts both for  single pole exchange and for  exchange degenerate  t r a -  
jec tor ies ,  and we d iscuss  the experimental  consequenses  for c r o s s  sec -  
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t ions and po la r iza t ions  with pa r t i cu l a r  emphas is  on line r e v e r s e d  p a i r s  of 
r eac t ions  such as  (K-p -* K0n and K+n -~ K0p) and (~+p -* K+~ + and K-p -~ 
-~ ~-~+). 

2. REGGE CUTS 

The eikonal, Glauber or  absorpt ion approaches  to Regge cuts  in ine las-  
tic reac t ions  all give substantial ly s imi la r  resul ts .  Detai ls  may vary ,  for  
instance the t r ip le  and higher  mult ipl ici ty exchanges  a re  not t r ea ted  equi-  
valently.  However,  near  the fo rward  direct ion (say for  - t<  0.6 (GeV/c) 2) 
single and double sca t te r ing  dominate and the cuts  come f rom P and non-P  
elast ic  sca t te r ing  modif icat ions  to the pole. Coherent  inelast ic  p r o c e s s e s  
[5] may modify the express ions  somewhat  but these effects  should not be 
dominant. 

A convenient approximate  express ion  for  the double sca t te r ing  t e r m  is 

• out 
Acut(V, t )  -- ~ f f d t l d t  2 TApole(v,  tl)[Aei~. (v, t2)+Ael" (v, t2)] , (1) 

' 2 2 _ t 2 + 2ttl  + 2tt2 + 2tl t  2 and our  amplitude is where  T = T-~ 6(T) and T =-t - t  
normal i zed  as  the uN non flip amplitude so that~to t = ImA/p  where v and p 
a r e  the pion lab. energy and momentum.  For  a spin flip amplitude the dou- 
ble sca t te r ing  t e r m  is re la t ive ly  sma l l e r  since the single sca t te r ing  van-  
i shes  for  t 1 = 0 and thus the convolution is reduced. One may a l ternat ively  
cons ider  the multiple sca t te r ing  p ro jec ted  in l o r  b and the r e su l t s  a re  
equivalent. For  instance,  the f la t ter  t dependence of the cut t e r m  is equi- 
valent  to the absorpt ion co r rec t ion  in low par t ia l  waves; and the spin flip 
amplitude l ies  in h igher  par t ia l  waves and is thus l e s s  affected by such 
absorpt ion.  

2.1. P-Contribut ion 
The P-con t r ibu t ion  to Acu  t wil have a phase  a lmost  180 ° f rom Apole  

s ince /A  el. is  negative and real .  This  des t ruc t ive ly  in ter fer ing cut con t r i -  
bution is inevitable in the type of model we a re  consider ing and a g r e e s  well 
with data, in con t ras t  to the opposite sign resul t ing f r o m  the iA~l" in a 
un i t a r i ty -based  approach.  Since the P - c u t  has  l e s s  rapid t dependence than 
the pole t e r m  the two contr ibut ions may cancel  complete ly  for  l a rge r  (-t) 
and such ze roes  explain the p and ¢o c r o s s o v e r  and the effective n o - c o m -  
pensat ion mechan i sm [6] for  the P ' .  

The exact phase  of the P - c u t  will depend on the phase  var ia t ions  of the 
pole with t s ince the convolution integral  samples  all negative t values.  If 
the phase  of the pole t e r m  ro ta tes  ant ic lockwise with decreas ing  t, then the 
P - c u t  phase re la t ive  to the pole t e r m  will be g r e a t e r  than 180 ° at t =0 since 
the convolution has  contr ibut ions f rom -t I > 0; and less  than 180 ° for  mode-  
ra te  t values  where the main contr ibut ions  in the integral  come f r o m  t 1 

t2 ~ ¼t. Since the spin-fl ip amplitude will be affected l e s s  by the cuts,  
such a deviation in phase  of the non-flip ampli tude f rom 180 ° will give a 
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small  polar izat ion.  If the spin-flip (B) and non-spin-f l ip  (A) ampli tudes 
have the same phase in the pole t e rm,  then the polar iza t ion  which has the 
sign of ImA*B will be posit ive near  t =0 and will change sign by modera te  t 
values.  A calculat ion by Blackmon for  ~p -~ ~?n i l lus t ra tes  this quantitatively 
[4]. 

2.2. Non-P contributions 
Pole-pole  cuts  a re  expected to contribute although absorpt ion by a s y m p -  

totic elast ic sca t ter ing only [7] does not include them. Such cuts lie about 
0.5 lower than the poles  in the a plane and will be important  up to modera te  
energies .  In pa r t i cu la r  they have a phase  which may be es t imated  f rom eq. 
(1) and is of the o rde r  of the sum of the phases  of the ampli tudes  evaluated 
at ~t plus 90 °. Thus the phase is not near  180 ° and they contr ibute substan-  
t ially to polar iza t ion  unlike the P - c u t s  which a re  suppressed.  The P ' p  cut 
in nN charge  exchange is an example and it builds a polar iza t ion more  pos -  
itive than the Pp cut alone and gives a more  rapid energy dependence. Such 
pole-pole  cuts a re  also invoked to explain the exchange in those p r o c e s s e s  
where no single pole has  the requ i red  quantum numbers ,  but evidence f rom 
such exper iments  in inconclusive [8]. 

3. EXCHANGE DEGENERACY AND LINE REVERSAL 

3.1. Kaon charge exchange 
Line r e v e r s e d  reac t ions  such as  K-p -" K0n and K+n --" K0p provide a 

sensi t ive test ing ground for  exchange degeneracy.  The absence of d i rec t  
channel r e sonances  in the la t ter  reac t ion  leads to s t rong constants  on the 
exchanged t -channel  Regge poles  f rom duality. The p and A 2 exchanges 

+ _.~ must  cancel  in the imaginary  pa r t  of the K n KUp amplitude and they a re  
thus degenerate  in t r a j e c t o r y  and their  contr ibutions will be 90 ° out of 
phase.  The relat ive sign of their  contribution is opposite for K-p -~ F,0n and 
they build a rotat ing phase (-e -in°t(t)) amplitude of the same modulus as  the 
rea l  K+n -~ K0p amplitude. Thus the c r o s s  sect ions for the two p r o c e s s e s  
should be equal, and fu r t he rmore  there  should be no polar iza t ion since the 
p and A 2 contribute in the same re la t ive  strength to both spin amplitudes.  
The fig. 1 shows that the K+n -~ K0p c r o s s  sect ion is l a r g e r  at low energies  
by about a fac tor  of 2 and may become comparable  at 5 GeV/c.  

The effect of the P - c u t  will be to reduce  the amplitude for K charge  ex- 
change slightly less  than that for  K charge  exchange since in the la t ter  case  
the phase of the "pole" t e r m  does not va ry  with t. Thus the P - c u t  has  the 
opposite effect f rom that needed. The non-P  cuts,  however,  a re  a s y m m e t -  
r ic  between the two p r o c e s s e s  and provide an explanation of the effect. In 
KN and KN elast ic  sca t ter ing the dominant non-P exchanges a re  the ex- 
change degenerate  t r a j ec to r i e s  P '  and w which contr ibute as  P ' +  w and 
P '  - ~ respect ively .  The la t ter  combination is pure ly  rea l  while the f o r m e r  
has the same modulus but a rotat ing phase (-e-ZTra(D) and so is most ly im-  
aginary at t ~ 0. The non-P pole cuts a re  then exactly negative imaginary  
for  K+n -~ K0p and approximately  negative imaginary  at small  t for  K-p -~ 
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Fig. I .  Differential cross-section data from ref. [9] is compared for K-p --~K0n and 
K+n --, K0p. 

-~ K0n. Thus  these  cuts  will only des t ruc t ive ly  i n t e r f e r e  in the ca se  of 
K=p -~ K0n, and the l a r g e r  K+n --* K0p c r o s s  sec t ion  is  p r ed i c t ed  c o r r e c t l y .  
We take  th is  as  ev idence  of the i m p o r t a n c e  of po l e -po l e  cuts  when e f fec t s  
f r o m  the p r edominan t  P - c u t  a r e  suppres sed .  

The po la r i za t ion  may  then be p r e d i c t e d  fo r  K-p  ~ K0n to be sma l l  and 
pos i t i ve  at sma l l  t and turning negat ive  at m o d e r a t e  t f r o m  the P -cu t ,  and 
pos i t i ve  and i nc r ea s ing  f r o m  ze ro  at - t>  0 f r o m  the P '  and w cut; and fo r  
K+n -~ K0p the po l a r i z a t i ons  will be l a rge  and pos i t i ve  coming f r o m  the P '  
and co cut alone. A m e a s u r e m e n t  of the po la r i za t ion  for  both p r o c e s s e s  at 
c o m p a r a b l e  e n e r g i e s  would al low conf i rmat ion  of th is  cu t -modi f i ed  degen-  
e r a c y  scheme.  

3.2. Hypercharge exchange 
Simi la r  r ea son ing  app l ies  to the p a i r  of l ine r e v e r s e d  r e a c t i o n s  ~+p 

-~ K +y,+ and K-p  ~ ~-~+.  The  degene ra t e  K*(1-) and K*(2 +) exchanges  ana l -  
ogous to p and A 2 will be  90 ° out of phase .  The  resu l t ing  equali ty of c r o s s  
sec t ions  is  c o m p a r e d  with data in fig. 2. The  cont inuous c u r v e s  a r e  a one 
pole  Regge in te rpola t ion  of the data which does  not d is t inguish the two re= 
act ions .  Thus  the fac t  that  the ~+p ~ K+x + data f i t s  r e a sonab ly  ~vell while 
the K=p ~ ~-~+ data  l i e s  cons i s ten t ly  high imp l i e s  that experimentally 

d__~d/(K-p ~ ~- ~+) > ~ (~+p ~ K+~ +) 

In o r d e r  to e s t i m a t e  the cut e f fec t s  one mus t  have  r e c o u r s e  to SU(3) 
which, combined  with duali ty,  l eads  to the duality d i a g r a m  approach  [11] 
which p r e d i c t s  that  the K* po les  will cont r ibute  with such s t rength  that  the 
K-p  -~ ~-~+ ampl i tude  will be  r ea l  while ~+p ~ K +y.+ will have ro ta t ing  
phase .  The  P contr ibut ion should f a c t o r i z e  so that  P~p+ PK+E+ -- P K p -  PTr- E + 
and thus the sum of t e r m s  (P~+p + PK+E+) and (PK-p  + P~=E+) a s  needed in 
eq. (1) will be  the s a m e  to f i r s t - o r d e r .  The non-P  po le s  in e las t ic  s c a t t e r -  



648 C. MICHAE L 

` 1 0 1 ~  "rr+p"~K+ ~+ F K -P"~ " / r -~+  

,1o'  \ .  

4.07 
\ 

5.47 

10 z 

L ,1o,  70 

,10 

,16 t ~ ~  
0 -.5 -,1.0 0 --.5 -,1.0 -t.5 

1, (GeV/c) 2 

Fig. 2. Differential  c ro s s - s ec t i on  data from ref. [10] is compared for ?r+p --*K+~ 
and K-p -* ~r-~ +. The curves  a re  s ingle-pole Regge interpolations of the data and a re  

equal at a g]ven energy for both react ions.  

ing a r e  such  tha t  f o r  t ~ 0 the  i m a g i n a r y  p a r t  i s  l a r g e r  in ( K - p +  ~ - E  +) t han  
in (~+p + K+E +) and  the  l a t t e r  c o m b i n a t i o n  h a s  a s u b s t a n t i a l  n e g a t i v e  r e a l  
p a r t  [12]. Then  bo th  P and  n o n - P  c u t s  s u p p r e s s  the  K - p  -* ~ - E  + r e a c t i o n  m o r e  
and  l e a d  to a m o d i f i e d  r e s u l t  opposite to t he  e x p e r i m e n t a l  e v i d e n c e .  The  
p o l a r i z a t i o n  i s  p r e d i c t e d  to  be  p o s i t i v e  fo r  ~+p --" K+Z + f r o m  both  P and  
n o n - P  c u t s  wh i l e  on ly  t he  n o n - P  c u t s  c o n t r i b u t e  f o r  K - p  -" ~ - E  + and  they  
l e a d  to  a p o l a r i z a t i o n  s u p p r e s s e d  f o r  s m a l l  t and  p o s i t i v e  fo r  l a r g e r  I tl • 
T h e  m e a s u r e d  p o l a r i z a t i o n  [10] f o r  v+p -~ K+E + i s  i n d e e d  p o s i t i v e  f o r  0.2 < 
- t  < 0 . 6 ( G e V / c )  2 a l though  i t  i s  a p p a r e n t l y  s u p p r e s s e d  n e a r  t = 0. 

4. SUMMARY 

(i) The  R e g g e  cut  m o d i f i c a t i o n s  of dua l  e x c h a n g e  d e g e n e r a t e  R e g g e -  
t r a j e c t o r i e s  p r o v i d e  an  a t t r a c t i v e  p i c t u r e  which  e x p l a i n s  h igh  e n e r g y  d a t a  
s a t i s f a c t o r i l y .  

(i i)  E v i d e n c e  f r o m  the  n o n - e q u a l i t y  of KN and  KN c h a r g e  e x c h a n g e  c o n -  
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f i r m s  the  need  fo r  a b s o r p t i v e  e f fec t s  f r o m  n o n - a s y m p t o t i c  e l a s t i c  s c a t t e r -  
ing;  the l a r g e r  a b s o r p t i o n  f r o m  ~ r e l a t i v e  to KN be i ng  r e s p o n s i b l e .  

(iii) The  l i n e  r e v e r s e d  p a i r  of r e a c t i o n s  ~+p -~ K+Z + and  K - p  -~ ~ - ~ +  a r e  
not  c o n s i s t e n t  with the  s c h e m e  in  r e l a t i v e  magn i tude .  The  e x p e r i m e n t a l  e v -  
i d e n c e  is  not  c o n c l u s i v e  but  the s i m p l e s t  exp l a na t i on  i s  tha t  the  to ta l  c r o s s  
s e c t i o n s  s a t i s fy  

~'(~+p) +~(K+~+)> (;(K-p) +( ; (~-~+)  

in  the 3 - 8  G e V / c  e n e r g y  r a n g e  de sp i t e  the SU(3) -dua l i ty  d i a g r a m - f a c t o r -  
i z a t i on  a r g u m e n t s  we p r e s e n t e d .  

(iv) P o l a r i z a t i o n  p r e d i c t i o n s  a r e  p r e s e n t e d .  

The  au tho r  t h a n k s  P r o f e s s o r  V. B a r g e r ,  P r o f e s s o r  D. Cl ine ,  P r o f e s s o r  
D. R e e d e r  and  P r o f e s s o r  M. B l a c k m o n  for  u se fu l  d i s c u s s i o n s .  H osp i t a l i t y  
a t  the  U n i v e r s i t y  of W i s c o n s i n ,  Mad i son ,  w he r e  t h i s  work  was  s t a r t e d  i s  
g r a t e f u l l y  acknowledged ,  and  Dr .  K. C. W a l i  a nd  Dr .  R. C. A r n o l d  a r e  t ha nke d  
fo r  t h e i r  h o s p i t a l i t y  at  the  A r g o n n e  Na t iona l  L a b o r a t o r y .  

REFERENCES 

[1] R. Dolen, D. Horn and C. Schmid~ Phys. Rev. 166 (1968) 1768; 
C. Schmid, Phys. Rev. Letters 20 (1968) 689; 
G. Veneziano Nuovo Cimento 57A (1968) 190. 

[2] V. Barger,  Phys. Rev. 179 (1969) 1371; 
C. Schmid, Nuovo Cimento Letters 1 (1969) 165; 
R. H. Capps, Phys. Rev. Letters 22 (1969) 215; 
J. Madula et aL, Phys. Rev. Letters  22 (1969) 1147; 
V. Barger and C. Michael, Experimental  aspects of dual theories for baryons, 
Phys. Rev. (to be published). 

[3] G. V. Dass, C. Michael and R. J. N. Phillips, Nucl. Phys. B9 (1969) 549; 
V. Barger and R. J. N. Phillips, Meson exchanges from simultaneous analysis of 
~N scat ter ing data and dispersion sum rules,  Wisconsin preprint  COO-223 
(April 1969). 

[4] R. C. Arnold and M. L. Blackmon, Phys. Rev. 176 (1968) 2082; 
C. Michael, Nuel. Phys. B8 (1968) 431; 
M. L. Blackmon and G. R. Goldstein, Phys. Rev. 179 (1969) 1480; 
M.L. Blackmon, Phys. Rev. 178 (1969) 2385; 
C. Lovelace, CERN TH 1047 (1969). 

[5] F. Henyey, G. L. Kane, J. Pumplin and M. H. Ross, Phys. Rev. Letters 21 (1968) 
946 and Phys. Rev., to be published. 

[6] V. Barger and R. J. N. Phillips, Phys. Letters 29B (1969) 676. 
[7] G. Cohen-Tannoudji, et al., Nuovo Cimento 48A (1967) 1075. 
[8] C. Michael, Phys. Letters 29B (1969) 230. 
[9] J. Badler et al., Saclay CEA Report R-3037 (1966); 

P. Astbury et al., Phys. Letters  16 (1965) 328; 23 (1966) 396; 
Y. Goldschmidt-Clermont et al., Phys. Letters 27B (1968) 602; 
D. Cline, J. Penn and D. Reeder, Wisconsin Prepr in t  (1968). 

[10] S. M. Pruss  et al., Phys. Rev. Letters  23 (1969) 189, 
W.A. Cooper, et al., Phys. Rev. Letters 20 (1968) 472; 
J. Badier et al., Saclay CEA Report R-3037 (1966); 
J. S. Loos et al., Phys. Rev. 173 (1968) 1330; 



650 C. MICHAEL 

D. Bi rnbaum et al. ,  p r e sen t ed  by G. Bel le t in i  in P roceed ings  of 14th in te rna t iona l  
confe rence  on high ene rgy  phis ics ,  Vienna 1968, edi ted by J .  P ren tk i  and J .  
S te inberger ,  CERN, p. 358. 

[11] H. Hara r i ,  Phys .  Rev. L e t t e r s  22 (1969) 562; 
J .  Rosner ,  Phys .  Rev. Le t t e r s  22 (1969) 689; 

[12] J .  Rosner ,  Phys.  Rev. Le t t e r s  21 (1968) 950. 



Volume 31B, number  4 P H Y S I C S  L E T T E R S  16 February  1970 

A M B I G U I T I E S  I N  R E G G E  A N A L Y S E S  A N D  C O M P A R I S O N  W I T H  P H A S E  

C. DAUM, C. M I C H A E L  and  C. SCHMID 
CERN, Geneva, Switzerland 

Received 15 January  1970 

S H I F T S  

We discuss  a s imple  rota t ion in the flip non-fl ip plane, which is undetermined in conventional Regge fits 
(i.e., those without FESR), and which thus affects the conclusions about mechan ism choosing at ol = 0. 
Our t independent effective pole analysis  of K~p elas t ic  sca t t e r ing  natural ly  continues down to PLab = 
= 1.45 GeV/c,  where a rotat ion invar iant  compar ison with the K+p phase shif ts  is made. 

Regge  po le  p h e n o m e n o l o g y  p r o v i d e s  a f r a m e -  
w o r k  fo r  o b t a i n i n g  the  a m p l i t u d e s  of h i g h  e n e r g y  
p r o c e s s e s .  H o w e v e r  in  c o n v e n t i o n a l  a n a l y s e s  
[ i . e . ,  t h o s e  w i thou t  F E S R * ] ,  t h e r e  a r e  s e v e r a l  
f e a t u r e s  w h i c h  s h o u l d  b e  d i s c u s s e d  in  d e t a i l :  

i) the  u n i q u e n e s s  of the  f i t s ;  
i i)  the  z e r o s  of the  a m p l i t u d e s  and  m o r e  s p e -  

c i f i c a l l y  the  m e c h a n i s m s  a t  a = 0, e t c . .  T h e  
k n o w l e d g e  of t h e s e  z e r o s  i s  c r u c i a l  f o r  d u a l i t y  
c o m p a r i s o n s ;  

i i i )  the  p r e d i c t i v e  p o w e r  of s u c h  f i t s .  
M o s t  f i t s  have  b e e n  done  in  a t - d e p e n d e n t  m a n n e r  
w h i c h  n e c e s s i t a t e d  a p r i o r i  a s s u m p t i o n s  abou t  
z e r o s  and  m e c h a n i s m s  f o r  e a c h  po le  r e s i d u e .  We 
wan t  to d e t e r m i n e  s u c h  z e r o s  in  a n  u n b i a s e d  way 
and  t h e r e f o r e  we p e r f o r m  ou r  a n a l y s i s  a t  e a c h  
f i xed  t v a l u e  i n d e p e n d e n t l y .  We c o n s i d e r  m e s o n -  
b a r y o n  s c a t t e r i n g  (0-½ + ~ 0-½+). W i t h i n  a m o d e l  
e m p l o y i n g  a f ixed  n u m b e r  of R e g g e  p o l e s ,  one c a n  
d i s c u s s  the  u n i q u e n e s s  of the  f i t s .  We s h a l l  show 
t h a t :  

a) t h e r e  i s  a s i m p l e  r o t a t i o n  o p e r a t i o n  in the  
s p i n  f l i p - s p i n  n o n - f l i p  p l a n e  w h i c h  l e a v e s  un -  
c h a n g e d  the  c r o s s - s e c t i o n  and  p o l a r i z a t i o n  a t  
e a c h  t s e p a r a t e l y ,  wh i l e  i n t e r m i x i n g  the  R e g g e  
r e s i d u e  f u n c t i o n .  T h i s  o p e r a t i o n  a f f e c t s  a l l  c o n -  
v e n t i o n a l  Regge  a n a l y s e s  ( i . e . ,  t h o s e  w i t hou t  
FESR) .  H o w e v e r ,  if one  w o r k s  m o d u l o  the  r o t a -  
t i on ,  one can  i n v e s t i g a t e  s i m p l y  any r e m a i n i n g  
a m b i g u i t i e s  in  the  a n a l y s i s ;  

b) the  i n t e r m i x i n g  of R e g g e  r e s i d u e s  can  m o d i -  

* We pe r fo rm a Regge analysis  without FESR for the 
following reasons :  a) possibi l i ty  to confront high 
energy resu l t s  with FESR; b) for our application to 
K:~p sca t te r ing ,  though they were useful when no pol-  
ar iza t ion data existed [1], the FESR have poorly known 
contributions f rom the Born poles,  unphysical  region 
and K-p phase shift  region.  

fy the  z e r o s  in  r e s i d u e  f u n c t i o n s  and  c h a n g e  t he  
i n t e r p r e t a t i o n  of m e c h a n i s m s ;  

c) the  e f f e c t i v e  R e g g e  po le  m o d e l  h a s  p r e d i c t -  
ive  p o w e r  c o m i n g  f r o m  the  c o n n e c t i o n  b e t w e e n  
the  p h a s e  of the  a m p l i t u d e  and  i t s  e n e r g y  d e p e n d -  
ence .  H o w e v e r ,  t he  Regge  p r e d i c t i o n s  m u s t  b e  
t e s t e d  in  a m a n n e r  i n v a r i a n t  u n d e r  the  r o t a t i o n .  

W h e n  dc;/dt and  P d a t a  a r e  a v a i l a b l e ,  one  h a s  
only  two r e a l  n u m b e r s  to  d e t e r m i n e  the  f o u r  c o m -  
p o n e n t s  of the  two c o m p l e x  a m p l i t u d e s  A '  and  B. 
An  a n a l y s i s  e m p l o y i n g  s e v e r a l  R e g g e  p o l e s  g i v e s  
one f u r t h e r  c o n s t r a i n t  s i n c e  the  p h a s e  i s  o b t a i n e d  
f r o m  the  e n e r g y  d e p e n d e n c e  ~. To  r e m o v e  the  
a b o v e  r o t a t i o n  d e g e n e r a c y ,  one m u s t  e i t h e r  m e a s -  
u r e  R o r  A p a r a m e t e r s  o r  c o m p a r e  to  a m p l i t u d e s  
o b t a i n e d  t h r o u g h  p h a s e  s h i f t  a n a l y s i s .  

We d e f i n e  a m p l i t u d e s  a and  b [2] s u c h  t h a t  

d~/dt : c ( l a l2+  IbI21 

P d~/dt = - 2C I m a b *  

a i s  the  c o n v e n t i o n a l A '  a m p l i t u d e .  F o r  e l a s t i c  
s c a t t e r i n g  C = (1 - t /4M2)/(16np2)  w h e r e  PT, i s  
the  m e s o n  lab .  m o m e n t u m ,  M th-~ t a r g e t  ma-gs. 
Wi th  q the  c e n t r e - o f - m a s s  m o m e n t u m ,  we h a v e  

- ~ p L  B (1 +t /4q2)½ 
b= 

2M(1 - t / 4M 2) 

We now c o n s i d e r  the  ( a , b )  p l a n e  ( and  not t he  
c o m p l e x  p l a n e )  

When there  is only one Regge pole (as in ~'N charge  
exchange),  one may de te rmine  f rom only dcr/dt data 
two ext ra  quanti t ies ,  the phases  of A' and /~ These 
phases  a re  equal. 

222 
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Re = ( R e a ,  He b~ 

Im = ( I m a ,  Im b) 

In v e c t o r  n o t a t i o n  the  m e a s u r e d  q u a n t i t i e s  a r e  
g i v e n  by  

d ~ / d t  = C(Re • R e + I m  • Im) 

P d g / d t  = 2 C R e  • Im 

dcr/dt i s  a s c a l a r  p r o d u c t ,  P d e / d t  a v e c t o r  p r o -  
d u c t  and  b o t h  a r e  i n v a r i a n t  u n d e r  a r o t a t i o n  in 
t he  s p i n  f l i p - n o n - f l i p  p l a n e  abou t  the  n o r m a l .  

R e g g e o l o g y  g i v e s  r e s t r i c t i o n s  on the  p h a s e  
( ang le  in  the  c o m p l e s  p l a n e )  f r o m  e n e r g y  d e p e n d -  
e n c e ,  bu t  t h i s  R e g g e  p h a s e  i s  invar ian t  u n d e r  r o -  
t a t i o n s  in  the  ( a , b )  p l a n e .  S ince  f o r  e a c h  R e g g e  
p o l e  R j  we h a v e  

l= 1 - COS 7T a j  _____~ 
Hej - s i n  ~ a-~ I m j  

T h e n  any  s u m  of po l e  a m p l i t u d e s  m a y  b e  r o t a t e d  
in  the  (a, b) p l a n e  w i t h o u t  c h a n g i n g  t he  c o m p l e x  
p h a s e s .  A R e g g e  cu t  c a n  in g e n e r a l  b e  c o n s i d e r e d  
a s  a s u m  of e f f e c t i v e  p o l e s  and  wi l l  a l s o  b e  i n -  
v a r i a n t  $. 

The  p a r a m e t e r s  A and  R a r e  r e l a t e d  to la l  2 + 
I bl 2 and  Re(ab *) w h i c h  a r e  c l e a r l y  not  i n v a r i a n t  

u n d e r  s u c h  r o t a t i o n s  and  w i l l  a l low,  w i t h i n  a 
R e g g e  po l e  m o d e l ,  a c o m p l e t e  d e t e r m i n a t i o n  of 
t he  a m p l i t u d e s .  H o w e v e r ,  t hey  h a v e  on ly  b e e n  
m e a s u r e d  in nN s c a t t e r i n g  [3]. A l s o  n e a r  t = 0 
one  m a y  u s e  l i m i t e d  t c o n t i n u i t y  a r g u m e n t s  a s  in  
7rN c h a r g e  e x c h a n g e  [4] to  l i m i t  the  r o t a t i o n  a n g l e  
s i n c e  the  f o r w a r d  c r o s s - s e c t i o n  d ip  i m p l i e s  s u b -  
s t a n t i a l  sp in  f l ip .  

P a r t i c u l a r  m e c h a n i s m s  s u c h  a s  " n o n s e n s e "  
and  " C h e w "  f o r  + s i g n a t u r e d  t r a j e c t o r i e s  a t  a = 0 
a r e  not  i n v a r i a n t  c o n c e p t s  and  can  b e  r o t a t e d  in to  
one  a n o t h e r .  T h e r e f o r e  t hey  c a n n o t  b e  d e t e r m i n e d  
in  a n  u n b i a s e d  way in  a t r a d i t i o n a l  R e g g e  f i t .  
D y n a m i c a l  z e r o s  m a y  a l s o  b e  m o v e d  in  a s i m i l a r  
way.  

In o r d e r  to  d i s c u s s  any  r e m a i n i n g  a m b i g u i t i e s  
in  a R e g g e  f i t ,  we m u s t  f i r s t  a r b i t r a r i l y  f ix  the  
o v e r - a l l  o r i e n t a t i o n  in  t he  ( a - b )  p l a n e .  We c h o o s e  
t h i s  o v e r - a l l  o r i e n t a t i o n  s u c h  t h a t  b(P) = 0 a t  a l l  
t, w h i c h  i s  no t  a p h y s i c a l  c o n s t r a i n t  on the  
P o m e r o n ,  bu t  i s  m e r e l y  a convention; e q u a l l y  
w e l l  we cou ld  h a v e  c h o s e n  b = 0 f o r  any  o t h e r  of 
t he  p o l e s  in the  m o d e l .  In the  p a s t ,  i t  w a s  known  
t h a t  b p  w a s  p o o r l y  d e t e r m i n e d  [5]; we e m p h a s i z e  

However,  a specif ic  model,  such as the absorpt ion 
p resc r ip t ion  for  the cut discontinuity,  is not invar ian t  
under  these  rota t ions .  

t h a t  ou r  r e s u l t  h a s  n o t h i n g  to do w i t h  the  P o m e r o n  
p e r  se ,  bu t  r o t a t e s  a l l  p o l e s  in  the  p r o b l e m  equa l ly .  

A s  an  i l l u s t r a t i o n  we s h a l l  now d i s c u s s  the  
R e g g e  a n a l y s i s  of K i p  e l a s t i c  s c a t t e r i n g .  We u s e  
d ~ / d t  and  P d a t a  [6,7]  b e t w e e n  P L  = 1.45 and  15 
G e V / c .  The  d ~ / d t  d a t a  w e r e  s m o o t h e d  in t and  
n o r m a l i z e d  a t  t = 0 to  the  f o r w a r d  a m p l i t u d e  o b -  
t a i n e d  f r o m  If'TOT [8] and  d i s p e r s i o n  r e l a t i o n  
r e a l  p a r t s  [9]. Al l  d a t a  a r e  i n t e r p o l a t e d  to o b t a i n  
p o i n t s  a t  t v a l u e s  in  s t e p s  of 0.1 f r o m  t = 0 to  t = 
= - 1.0 (GeV) 2. We u s e  a c o n v e n t i o n a l  e f f e c t i v e  
po l e  m o d e l ,  w h e r e  e f f e c t i v e  p o l e s  r e p r e s e n t  the  
c o m b i n e d  e f f e c t s  of p o l e s  and  cu t s .  T h i s  i m p l i e s  
t h a t  we c a n n o t  u s e  f a c t o r i z a t i o n .  

S ince  t h e r e  a r e  no good d a t a  on K+n e l a s t i c  
s c a t t e r i n g  ( in p a r t i c u l a r  no p o l a r i z a t i o n s )  n o r  on 
K ° r e g e n e r a t i o n  on p r o t o n s ,  c h a r g e  e x c h a n g e  wi l l  
not  g ive  any  c o n s t r a i n t s  on  the  K±p e l a s t i c  a m p l i -  
t u d e s  w h i c h  we s e t  out  to  d e t e r m i n e .  T h e r e f o r e  
we do not  i n c l u d e  c h a r g e  e x c h a n g e  d a t a ,  and  we 
on ly  d e t e r m i n e  the  d e f i n i t e  l i n e a r  c o m b i n a t i o n  of 
t c h a n n e l  i s o s p i n s ,  w h i c h  c o r r e s p o n d s  to K±p 
e l a s t i c  s c a t t e r i n g ,  n a m e l y ,  p +co --- V and  A2 +f0  ~ 
- T. We a s s u m e  t h a t  the  c o u p l i n g  of ~ a n d f '  to  
NN i s  w e a k  and  can  b e  n e g l e c t e d .  We a r e  l e f t  w i th  
t h r e e  p o l e s :  P ,  T ,  V. F o r  s i m p l i c i t y ,  we a s s u m e  
t h a t  the  t r a j e c t o r i e s  of V and  T a r e  d e g e n e r a t e  
a V = a T = ot M (M = m e s o n ) ,  bu t  the  r e s i d u e s  m u s t  
no t  b e  t a k e n  d e g e n e r a t e  s i n c e  s u c h  s t r o n g  e x -  
c h a n g e  d e g e n e r a c y  would  not  r e p r e s e n t  the  d a t a  
q u a n t i t a t i v e l y  [7]. F o r  n u m e r i c a l  s t a b i l i t y ,  we 
f ix  the  two t r a j e c t o r y  f u n c t i o n s ,  a p  and  a M a t  
v a r i o u s  v a l u e s .  H e r e  we s h a l l  show two c a s e s ;  a 
n o n - z e r o  P s l o p e  IS]: a p  = 1 + 0 . 3  t ,  a M = 0 . 5 +  
0.9  t ;  and  a f l a t  P IF] :  Otp = 1, a M = 0 . 5 + t .  In a 
s u b s e q u e n t  p u b l i c a t i o n  we s h a l l  d i s c u s s  t he  e v i -  
d e n c e  t h a t  the  d a t a  p r e f e r  the  f o r m e r  cho i ce .  As  
d e s c r i b e d  a b o v e ,  we w o r k  a t  e a c h  t s e p a r a t e l y  in  
o r d e r  to  r e m o v e  p r e j u d i c e s  a b o u t  z e r o s  of r e s i -  
d u e s ;  we c o n c e n t r a t e  on t ¢ 0. In o r d e r  to  f ix  the  
o v e r - a l l  o r i e n t a t i o n  in the  (a,b) p l a n e  we c h o s e  the  
c o n v e n t i o n  B p  =- 0 a t  a l l  t ;  t hus  we a r e  l e f t  w i th  
f i ve  unknown  r e s i d u e s  a t  e a c h  t v a l u e :  ~p ,  VT, 
YV, f iT'  fiV ( w h e r e  I m A '  = y v  a,  I m B = / 3 v  a - 1  
a n d  v = co L + t /4M) .  

F o r  0 ~< - t ~< 0.5 and  e a c h  a c h o i c e ,  we ob-  
t a i n e d  f i t s  a t  e a c h  t v a l u e  w h i c h  led to a u n i q u e  
s o l u t i o n  in w h i c h  e a c h  r e s i d u e  f u n c t i o n  w a s  r e -  
m a r k a b l y  c o n t i n u o u s  in t. U s i n g  f i r s t  a l o w e s t  
m o m e n t u m  of 2.75 G e V / c  fo r  the  f i t s ,  we e x -  
t e n d e d  t h i s  to 1.45 G e V / c  and  found  s u b s t a n t i a l l y  
the  s a m e  s o l u t i o n .  C o n s e q u e n t l y  we r e t a i n e d  1.45 
G e V / c  a s  a l o w e s t  m o m e n t u m  and  w e r e  e n c o u r -  
aged  by  the  r e a s o n a b l e  f i t s ,  p a r t i c u l a r l y  f o r  K+p, 
a t  t h i s  m o m e n t u m .  We a n a l y z e d  the  f i t t i n g  p r o -  
c e d u r e  in o r d e r  to  u n d e r s t a n d  t he  u n i q u e n e s s ;  we 
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Fig. 1. Amplitudes for K+p e las t ic  sca t te r ing  at 1.45 GeV/c and t = -0 .4  GeV 2, in the spin f l ip-non-f l ip  plane f rom 
the Regge pole model S descr ibed  in the text,  and f rom the phase shift  solutions of ref.  10. The Regge amplitudes 

and ~ may be rota ted s imul taneously  as descr ibed  in the text; 0(Re,Im) is the angle between these  two vec tors .  

found  t h a t  7 p  was  d e t e r m i n e d  by  the  h i g h e r  e n e r -  
gy d a t a  in ~(K-)  + o~K+), and  t h e n  7 V a n d f l  T w e r e  
d e t e r m i n e d  in a un ique  way f r o m  the  d a t a  on 
~(K-)  - ~(K +) and  P ~ ( K - )  + P~(K+),  r e s p e c t i v e l y .  
7 T  and  f V  a r e  t h e n  i d e n t i f i e d  f r o m  the  l o w e r  
e n e r g y  d a t a  on a (K- )  + a(K +) and  f r o m  P ~ ( K - )  + 
- Pg(K+) • VT and  f V  a r e  in  g e n e r a l  l e s s  w e l l  d e -  
t e r m i n e d ,  bu t  out  to  It[ = 0.5 one o b t a i n s  a un ique  
so lu t i on .  F o r  It[ > 0 . 5 ,  the  a m b i g u i t i e s  (in p a r t -  
i c u l a r  a f o u r - f o l d  a m b i g u i t y  a f f e c t i n g  flV and  YT) 
w i l l  b e  d i s c u s s e d  in a n o t h e r  p u b l i c a t i o n .  

We s u m m a r i z e  o u r  r e s u l t s  f o r  - t  ~< 0.5 (with 
f p  =-0 of c o u r s e ) ;  7 V h a s  the  u s u a l  c r o s s  o v e r  
z e r o  a t  t ~ -  0.15,  f V  h a s  a z e r o  at  - 0 . 4 5 ;  b o t h  
7 T  and  fliT h a v e  g h o s t  k i l l i n g  z e r o s  a t  aqVI = 0; f V  
and  fiT a r e  a l m o s t  e q u a l  in a g r e e m e n t  w i t h  e x -  
c h a n g e  d e g e n e r a c y .  

We p a s s  now to the  c o m p a r i s o n  of o u r  Regge  
p r e d i c t i o n s  f o r  the  p h a s e  and  sp in  d e p e n d e n c e  of 
the  K+p a m p l i t u d e s  a t  1.45 G e V / c  w i t h  t h o s e  f r o m  
p h a s e  s h i f t  a n a l y s i s  [10]. We show in f ig.  1 a 
t y p i c a l  c o m p a r i s o n  f o r  the  a m p l i t u d e s  in  the  (a, b) 
p l a n e .  S ince  we m a y  r o t a t e  the  R e g g e  a m p l i t u d e s  
a b o u t  the  n o r m a l  to the  p l a n e ,  we m u s t  c o m p a r e  
inv_ariant__~quantities. P o s s i b l e  c a n d i d a t e s  a r e  
I R e [ ,  [ Im] and  0(Re,  Ira). H o w e v e r ,  i t  i s  m o r e  

c o n v e n i e n t  to  c o m p a r e  f i r s t  t he  two f i t t e d  q u a n -  
t i t ! e s  da_/dt ~ ]R--e 2 + I Im [ 2 and  Pd  a/dt 

Re Him I s i n 0 ( R e , I m ) .  T he  r e a l  t e s t  i s  t h e n  the  
c o m p a r i s o n  of a t h i r d  i n v a r i a n t w h i c h  can  be  
8(Re,  Im) or  e l s e  qb = I R e e l / ! ~ m ] ,  the  l a t t e r  b e i n g  
the  t a n g e n t  of the  " a v e r a g e  R e g g e  p h a s e " .  Such a 
t h i r d  i n v a r i a n t  i s  the  p r e d i c t i o n  of R e g g e  in t h i s  
con tex t .  In f ig.  2 t h e s e  f o u r  q u a n t i t i e s  (of w h i c h  

t3  

¢L 
$ 

i i i i 

-.~ 

I -o, -~2-d3-&-os 
t (GeV)Z 

t( 
b 

P 

E~ 

-0.1 -f12 -O3 -{14 -{15 
t (GeV) 2 

Fig. 2. Comparison for K+p elas t ic  sca t t e r ing  at 1.45 
GeV/c against  t. Solid l ines a re  phase shift  solutions I 
and II of ref .  10. The squares  are  our fixed t Regge 
predic t ions  which a re  connected to guide the eye by a 
dashed line for t r a j ec to r i e s  S (~p  = 1 + 0.3 t, ~M = 
= 0.5 + 0.9 t) and a dot -dash  line for t r a j ec to r i e s  
F ( ~ p  = 1, ot M = 0.5 + 1.0 t). a) Differential  c r o s s -  
sect ion,  data f rom Bett ini  et al. [6]° b) Polar izat ion,  
data [6] f rom Anderson et al. (black c i rc les)  and Asbury 
et al. (open c i rc les) ,  c) The ra t io  ~ of lengths of the 
vec tors  R=-~ and ~___m. d) T_he angle 0 between the vec tors  

R~ and Ii~, see  fig. 1. 

on ly  t h r e e  a r e  i n d e p e n d e n t )  a r e  c o m p a r e d  f o r  
b o t h  o u r  s e t s  of R e g g e  t r a j e c t o r i e s  S, F and  f o r  
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b o t h  p h a s e  s h i f t  s o l u t i o n s  I, II [10]. T he  p o l a r i -  
z a t i o n  d a t a  c l e a r l y  show the  n e e d  of h i g h e r  p a r t i a l  
w a v e s  in the  p h a s e  s h i f t  a n a l y s i s  to  g ive  a s h a r p e r  
r i s e  at  s m a l l  t. In the  0 p lo t ,  f ig .  2d,  the  R e g g e  
p r e d i c t i o n  i s  s e e n  to be  r a t h e r  i n d e p e n d e n t  of the  
c h o i c e  of t r a j e c t o r i e s ,  and  t he  R e g g e  p r e d i c t i o n  
s h o w s  a p r e f e r e n c e  f o r  the  p h a s e  s h i f t  s o l u t i o n  
II, w h i c h  i s  the  s o l u t i o n  m o s t  in  a c c o r d  w i t h  e x -  
c h a n g e  d e g e n e r a c y  e x p e c t a t i o n s  [7]. In f ig.  2c ,  q~ 
w h i c h  i s  r e l a t e d  to the  p h a s e  and  t h u s  to  t he  
v a l u e s ,  s h o w s  a l a r g e r  d i f f e r e n c e  b e t w e e n  the  
p r e d i c t i o n s  f r o m  o u r  two c h o i c e s .  T h e s e  p r e d i c -  
t i o n s  a r e  in q u a l i t a t i v e  a g r e e m e n t  w i t h  the  p h a s e  
s h i f t  a m p l i t u d e s  e x c e p t  a t  t ~ 0. H e r e ,  o u r  ~b 
v a l u e s  a r e  o b t a i n e d  f r o m  f i t s  to  the  e n e r g y  d e -  
p e n d e n c e  of o'TO T f o r  K+p and ,  a t  t = 0, l i e  0.1 
h i g h e r  t h a n  C a r t e r ' s  v a l u e  [9]. T h e  p h a s e  s h i f t  
e s t i m a t e s  [10] of ~b a t  t = 0 do not  v a r y  s m o o t h l y  
w i t h  e n e r g y ,  and  m a y  c h a n g e  a p p r e c i a b l y  in m o r e  
r e f i n e d  a n a l y s e s .  

H a v i n g  s e e n  t h a t  the  i n v a r i a n t  c o m p a r i s o n  to 
p h a s e  s h i f t  a m p l i t u d e s  i s  f a i r l y  good,  one m a y  
now f ix  t he  o r i e n t a t i o n  of the  R e g g e  s o l u t i o n s  a t  
e a c h  t v a l u e  s e p a r a t e l y  f r o m  the  p h a s e  s h i f t s ,  If 
s o l u t i o n  II i s  e s s e n t i a l l y  c o r r e c t ,  t he  R e g g e  s o -  
l u t i o n  s h o u l d  b e  r o t a t e d  c l o c k w i s e  ( s e e  f ig .  1) and  
the  a n g l e  c o r r e s p o n d s  to ~ p / ~ p  ~ - 0.5.  H o w e v e r ,  
s o l u t i o n  I would  b e  c o m p a t i b l e  w i t h / ~ p / T p  a s  
l a r g e  a s  +2 .0 .  T h i s  s a m e  a n g l e  i n t e r m i x e s  the  
and  7 r e s i d u e s  fo r  b o t h  V and  T p o l e s  a s  wel l .  

The  m e t h o d s  of a m p l i t u d e  e x t r a c t i o n  e m p l o y e d  
in  p h a s e  s h i f t  a n a l y s i s  and  in Regge  a n a l y s i s  a r e  
a t  f i xed  s and  t ,  r e s p e c t i v e l y ,  and  a r e  qu i t e  i n -  
d e p e n d e n t  of e a c h  o t h e r .  It i s  m o s t  e n c o u r a g i n g  
t h a t  w h e n  one  i s  a b l e  to  c o n f r o n t  the  two m e t h o d s ,  
t hey  a g r e e  q u a l i t a t i v e l y .  M o r e o v e r ,  t he  R e g g e  
a p p r o a c h  e v e n  a l l o w s  us  to  d i s c r i m i n a t e  a m o n g  
p h a s e  s h i f t  s o l u t i o n s  g iv ing  e q u a l l y  good f i t s  to  
the  da ta .  P r o v i d e d  r e l e v a n t  q u a n t i t i e s  a r e  a s k e d  
of i t ,  t he  p r e d i c t i v e  p o w e r  of R e g g e  po l e  a n a l y s i s  
i s  e v i d e n t .  
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Abstract : For resonance states lying on a given Regge trajectory, the two-body production 
mechanism as a function of the excitation of the recurrence state is discussed. A dual 
resonance model suggests general features for the Regge-Regge-particle coupling in- 
volved in such production. An application is made to the high energy production in 
nN .--, naN of p, f0 and g mesons with emphasis on the relative production cross sections, 
the relative t-dependences, the ratio of natural to unnatural parity exchange and the 
helicity dependence. 

I. Introduction 

There is no contplete theory of two-body reactions at high energies. The salient 
features of  the data, however, can be described in a t-channel complex angular mo- 
menlun~ appro:tch. Tile exchange of  a Regge pole is found Ill to explain the energ3' 
dependence and phase of certain amplitudes (net helicity llip n = I in particular). 
The t-dependence of the Regge residue function can be evaluated front duality con- 
siderations. In particular the dual resonance model, B 4, gives a natural scale of I/ot' 
to the energy s attd so defines a residue ~(t) that should be essentially constant in t. 
The resulting t-dependence is indeed observed [ 1 ] experintentally for those ampli- 
tudes that have been found to be Regge-behaved. Other helicity amplitudes have a 
more complicated behaviour and in a complex angular montentum approach this 
implies the presence of  Regge cuts. 

Resonance states have been found to lie on exchange-degenerate Regge trajec- 
tories which are essentially linear in m 2. The highest lying such trajectory for a 
given set of  quantum numbers (the parent or leading trajectory) is well established 
(for example ,o - fo - g; to - A2; K* - K** etc). The relative couplings (partial 
widths) of  such Regge recurrence states to a given channel (mr etc.) have been 
studied. For instance, a dual resonance B 4 model gives an (~e) J decrease of the 
partial widths for large J. The daughter states implied by such dual models are much 
more model dependent. They will be affected by any unitarization or any absorp- 
tion of  low partial waves needed to make the dual resonance model more physical. 

At high energies, it becomes possible to produce Regge recurrence states in quasi 
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two-body reactions, for example nN --, pN, nN ---, f0 N, zrN ~ gN etc. At a given ener- 
gy, from a combined study of the different states on the leading Regge trajectory t .  
one can discuss the J-dependence of  (i) the resonance production cross section, (ii) 
the slope of the differential cross section in t and any eventual shrinking or anti- 
shrinking with J, (iii) the ratio of  different exchanges (for example rr to A 2 ex- 
change in rrN ~ nuN) and the ratio of  different helicity amplitudes, (iv) the relative 
absorption corrections to the Regge pole exchange. 

The next section reviews models that allow a discussion of  the relative produc- 
tion of  Regge recurrences. The on-shell exchange coupling (or equivalently the de- 
cay matrix element) is first discussed. The off-shell or Regge exchange coupling 
relevant to the production process is then discussed in different models. The dual 
resonance model is found to give the most complete treatment and this is related 
to analyses [2] using the inclusive triple Regge limit and finite mass sum rules (dual- 
ity for Regge-particle amplitudes). Appendix A contains relevant definitions and 
clarifications. 

The third section, together with appendix B, represents the specific results for the 
particle-Regge exchange-Regge production vertex from dual resonance models. Cotn- 
pared to the finite mass sum rule approach, a similar decrease of the ratio of natural 
parity exchange to unnatural parity exchange with increasing excitation J is found, 
while, uulike that :tpproach, no systematic anti-shrinking of  tile t-dependence with 
increasing mass is present in the dual model vertex. An analysis of the helicity strttc- 
ture of  the Regge exchange cottpling is made, attd the problem of  the tmwanted 
crossing matrix zeroes ill the s-ch:ttmel helicity n-exchange amplitudes is resolved. 

2. Regge recurrence production 

As a prelude, tile relative production cross section for a spin-J resonance of  mass 
m in the process a + b -" m + e by r-exchange is discussed. Oil the r-particle exchange 
pole, this can be related to the decay matrix element for m ~ a + r. Thus, for rr ex- 
change from arr beam, the recurrence production cross section is related to the nn 
partial width of the spin-J resonance, see also appendix A. 

l listorically, the partial widths of  spin-J resonances were first estimated [3] from 
the centrifugal barrier suppression factors for a decay in a box of  radius R 

m j r j ( m )  ~ gjq [qr h~ 1) (qr )] - 2 ,  

where h j  (1) is a spherical i lankel function of  the first kind. For a linear Regge trajec- 

t As well as the dependence of two-body reactions on J = ot(m 1) of the produced parent state, 
the dependence on m 2 for fLxed-J is also of interest. Thus, using vector dominance, one can 
relate the data on electroproduction (m 2 < 0) and photoproduction (m 2 = 0) of n mesons on 
nucleons to the data on nN -- nrrN with the dimeson system in a P-wave for a range of values 
of m 2 across the p meson width. 
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tory, qR ~ V~, and thus for large J, F(J') decreases asg jJ -J . .w i th  the dynamical 
assumption [4] of a constant gj, this is a very rapid decrease of the partial width 
with J. The usefulness of the centrifugal barrier factor lies rather in describing the 
large q behaviour of the width for fixed-J which is independent of assumptions about 
gj. 

A more reliable estimate of the J-dependence of the coupling Fcd(J) arises from 
considering the elastic scattering amplitude for c + d ~ c + d. For the imaginary part 
of the amplitude, duality relates the average direct channel resonance contribution 
to the Regge exchange amplitude. The t-dependence of the exchange amplitude then 
gives an estimate of the relative strength of different partial waves. For an amplitude 
with t-dependence e ~ R ~t, the contribution of the spin-J partial wave contains a fac- 
tor 

a(J)  "~ e -s(J+ l)/q2 R2 

Thus partial waves with J "" qR will be dominant while those with J ~, qR will be 
suppressed. For a Regge pole exchange amplitude, [R 2 has the form ~' Iog(a's) 
and then q2R2 "" c~'s log ct's. A direct channel resonance of partial width Fed and 
total width 1-'- l- will contribute a bump to the imaginary part of the amplitude a(J) 
of height Fcd/F T and of extent in s (or m 2) of m j  F T. Thus aj will receive an aver- 
age imaginary part of magitude m,F  , .  Then such duality considerations allow an 

• . . d CG s o ' ~  

estunate of the couphng of a spm J ~ ~'s = ~ m" parent resonance to the channel ed : 

m j  l~cd(J) "- e -J / l °g  J.  

This is a much slower decrease with J than that found for tile centrifugal barrier with 
constant gj. 

A more explicit example of such a dual estimation of the strength of the j th  
partial wave from the t-dependence of the high energy amplitude is the B 4 dual 
resonance model itself. Using the Irn "-* nTr dual amplitude [5, 6] gives for the leading 
trajectory : 

q2 q (2a,q2)J 1 
m j r  ( J ) - , . 2 j +  1 m ~ r ( J - l ) ! c j  ' 

where ¢j "" 2 J for large J, and is defined in appendix B. When the relevant isospin 
factors are included, this expression gives a reasonable account [6] of the nn partial 
widths: 0.85 I ~ and 0.34 r are predicted for the f0 and g respectively as against 
experimental va°lues [7] of ~ 0.9 F and ~" 0.5 ['p. Comparison of the g and p partial 
widths provides tile most interesting, test, since this is insensitive to any exchange 

, 2 degeneracy breaking. For large J, and with linear trajectory J = ¢~ m , tile above ex- 
pression has a J-dependence 
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m j F ( J )  " (~e} J 

Such a slow (~e) J exponential decrease is common to "all dual model approaches. 
In the production of  Regge recurrence states at high energy, the coupling or 

Regge residue that enters is (see appendix A) RJ(t ,  m2). When extrapolated to the 
particle exchange pole (c~(t) = 0 or 1 as appropriate).  R is related to the decay ma- 
trix element as function o f J  = a (m 2) discussed above. Thus• the essentially new 
feature of  interest in production is the interplay of the t, J = a(m2)•  and ~. depen- 
dence of  the coupling. 

The n-point dual resonance model allows [8] an explicit calculation of the coupl- 
ing RJx(t, m 2) and the results are presented in appendix B and discussed in detail 
in the next section. Here• such a B n calculation is compared with other approaches 
that have been suggested. Tile inclusive process a + b ~ anything + e, is related to the 
forward a + b + e --" a + b + e amplitude. Tile exchange of  a Regge trajectory o~r(t) 
coupled to b~, then leads to the consideration of  the forward Regge particle scatter- 
ing amplitude r + a ~ r + a. Dualit4y techniques applied to r + a ~ r + a relate the 
triple Regge amplitude at large m ' t o  resonance contributions at small m 2. The 
triple Regge amplitude has a term (s/m2) 2~'ff) which correlates the t- and m2-depen - 
dence, and this is conjectured [2] to be valid on average for m 2 in the resonance 
region. This gives rise to a production cross section for anything of  mass rn 2 which 
has a t-dependence antishrinking as e -t2cz'l°gm? with increasing m 2. Tile same 
factor (s/m2) 2=(t) also comes t froth t:,king the dot,ble Regge limit in the exclusive 
process a + b "-* c + d + e. l lere duali ty techniques need to be applied [9] to the 
r + a -'* c + d amplitt, de for varying m ' .  

The (S/ttl2) 2a(t) factor also yields a faster fall off  with m 2 when the exchanged 
trajectory ~ t )  is higher lying. Thus natural parity exchange (0~(t) "-. 0.5 + t) will 
become less important  relative to unnatural parity exchange (c~(t) "- 0 + t) as m 2 
increases at fixed-s. 

In practice for ~(m 2) in the range i to 2, the leading trajectories should dom- 
inate the r + a ---, r + a and r + a --, c + d processes, and such dual predictions will be 
relevant to parent resonance production. For higher m 2, however, just as for particle- 
particle scattering, the leading trajectory resonances will no longer dominate the 
amplitudes. Thus, there is no conflict with the result (sect. 3) from the dual reso- 
nance model that there is, in general, no antishrinking of  the t-dependence with m 2 
for the production of  parent trajectory states. 

Complementary to the complex angular momentum plane approach to the energy 
dependence, the dual absorptive model [10] or geometric model seeks to describe 
the momentum transfer dependence of  two-body reactions. Thus the t - :ependence 
of  the production cross section is predicted in such a model, and its dependence on 

1" Reggeizing the two-body a + b -.', m + e production amplitude gives an expression #(t) P~t) t 
(cos Or). For large s at t ~t 0 cos 0 ,~  s(2q.,mqbe) -a ; and for large mass m ~, qan . ~  m2(4t) -~ . 
Thus. Pc~(t)(cos a t) behaves as (s/m) . ~l'o have reasonable analytic behaviour, "however, 
~'(t) must contain a factor (qamqbe) art) and then the resultant two-body Regge exchange am- 
plitude has no explicit kinematic dependence o n  m 2. 
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the external mass m of a produced resonance can be found. Indeed, if a universal 
radius of peripherality R 0 is supposed for all exchange reactions, then fl~e t-depen- 
dence Jx (R o , ~ - 7 )  is independent of m 2 . Remembering the motivation via duality 
with peripheral resonances at low energy, one might rather expect the average 
angular momentum L o ~ qR to be independent of m 2. Then taking account of the 
dependence on m 2 of the final state momentum q f, leads to a J x ( R O ~  W~-['~f) 
behaviour. This shows a shrinking of the t-dependence with increasing m since qf 
decreases. For large s/rn 2, however, this effect gives a t-dependence independent of 
m 2 . 

3. Regge recurrence excitation in the dual resonance model 

Explicit calculations with a naturality conserving meson vertex and a naturality 
changing meson vertex are reproduced in appendix B. These vertices can be applied 
to natural parity meson production (JP = 0 ÷, 1- ,  2 +, 3 - ,  etc.) from pseudo.scalar 
mesons by the exchange of natural or unnatural parity Regge trajectories. The ap- 
plications will be most fruitful, if the amplitudes under consideration are Regge be- 
haved in s-dependence and phase and have the t-dependence characteristic of dual 
resonance couplings. 

For vector meson production on nucleons (PN ~ VN) the n = 1 natural parity 
isoscalar exchange amplitude (~  - f,} is indeed found [ L3] to have the Regge s- 
dependence: ( -  t')~ (~'s) ~(t) F(i - ~(t)) ~t(t) where ~ is the signature factor 
(~- 1 - e-inc'(t)). Tile 0 - A 2 charge exchange n = 1 amplitude is relatively small and 
hard to isolate without polarization data. The n = 1 unnatural parity charge ex- 
change (n) producing p with X = 0 in the s-channel frame is also found [ 14, i 5] to 
have the shrinking s-dependence of  a Regge trajectory exchange. The t-dependence 
of this amplitude is found [ 16] to be 0a 2 - O- t ~ ebt with b = 4.4 GeV -2 at 
17.2 GeV/c. This can be compared [ 1 ] with the Regge limit of a dual model ex- 
pression O(t) I" ( -  o~t))/ i ,( t)(a s) a(t) where #(t) is the product of the n0 and NN 
residues, In the range 0 < - t < 0.2 GeV 2. this latter expression behaves approxi. 
mately as (ta 2 - t) - t  l~(t) e cr where, at 17.2 GeV/c, c = 3.8 for a'  = 0.9 and c = 4.3 
for a' = 1.0. Comparing with the empirical values, the t-dependence of f ( t ) ,  thus 
defined with the duality scale of s of l/a', is almost constant apart from ~ fac- 
tors. This reggeized n-exchange gives a natural prediction for the exponential form 
factor that would have been needed for elementary n-exchange. 

Bearing in mind these expectations of which amplitudes should be Regge be- 
haved, some applications are presented of the dual resonance model couplings of 
Regge recurrences. Details are given in appendix B. 

3.1. Tile ratio o f  natural parity exchange to unnatural parity exchange 

The n exchange Regge couplings to recurrence states of spin J and helicity ),, 
UJ(t, m2), has the structure of the decay matrix element of the state to nn, and 
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an off-shell correction factor Xx J which, for thews-channel helicity frame, is the pro- 
duct of a low order polynomial in t and a ( -  t): Ixl factor. For natural parity ex- 
change, the Regge coupling NJ(t. m 2) has the structure of a decay matrix element, 
times a factor vr-L-t-/p a coming from the naturality change, and an off-shell correc- 
tion factor. Because of this ~ - t / p  a factor, NJI (m2)/UJo(m 2) ~ m - t  for increasing 
J. or or(m2); at fixed-t. Explicitly evaluating the factors in appendix B. gives 
N J / t d  ~x/-U-{-t, 0.70~,/L--/and 0.56x/Z-/for J =  I. 2 and 3 production (,O, f0' g) 1 /~0  
respectively at t ~ 0. 

This dependence is similar to the  (m2) e~U~O)-aN(O) or  m - 1  dependence arising 
on average in the finite mass sum rule approach. Experimental evidence supporting 
this dependence has been given 12]. in particular a comparison o f l  t = 0 natural 
parity exchange and I t = ! unnatttral parity exchange in nN ~ ,oN and nN --" gN. 
n-p  ~ n-n÷n data also show [ 15] a relative decrease of natural parity exchange 
with increasing rrn mass. The contribution of rite n cut makes this more difficult to 
analyze quantitatively, however. 

3. 2. Slope dependence on m" 

Tile t dependences of the Regge vertices are given by tile factors XJ(t. m 2) which 
are presented in appendix B. The t-dependence is different for different helicity am- 
plitudes and also different for s- or t-channel frames. The t-dependence is not of 
exponential form. and is characterized by the linear term in t at small-t; R ] ~ (  - t) ½fxl 
(I + b l t  + . . .  ) .  Tile slope of the t-dependence of the production amplitude as a 
function of excitation J = ~(m 2) is characterized by b(J). An antishrinking of tile 
spin-,/production cross section with t means a decrease of b with increasing m 2 at 
fixed energy s. For large-J and k t -- 0, the r-exchange couplingdoes have an anti- 
shrinking behaviour of the slope b as approximately b, J -0 (rn2) "" - ½a'lo~(m2), 

• t ~ / -  

smdlar to that found in the finite mass sum rule approaches from the ( s /m~  ~(t) 
factor. The same coupling in the s-channel frame (k s -- 0), however, has a strongly 
shrinking behaviour b J -0 (m2) " m2 coming from the crossing matrix. For the 
lowest spin states, onehnds explicitly: 
bp=0 ,  bfo = 0.8 andbg= 1.2 for~s =0 nexchange; 

b p=0 ,  bfo= 0 andbg= 0.14 fOrks=-+ l natural parity exchange; 

bp = 0, bfo - 0.9 and bg - 1.4 for comparison from a - a ' loga 'm 2 

antishrinkage. These slope factors b J represent the change in slope for different 
Regge recurrences at the meson vertex. An overall t-dependence coming from the 
Regge pole exchange factors and the baryon vertex have also to be added of course. 

The ~s = 0 n-exchange amplitude in rrN --*.,oN seems to be Regge behaved as dis- 
cussed above. The comparison of this amplitude with those for f0 and g production 
should be a particularly appropriate test of the predictions. Data indicate [15] that 
the s-channel helicity slope parameter is constant within errors from the ,o to f0 
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region in 7rN --, nnN at 17.2 GeV/c. The analysis assumes a common slope for all 
amplitudes at a given mass. however, although the p and f0 Xs = 0 amplitudes 
should dominate. A separation of these contributions and an extension to the g- 
meson region are needed to clarify experimentally the shrinkage or antishrinkage 
of the slope with J. 

3.3. Crossing rnatr£,c zeroes 

Consider n-exchange producing natural parity mesons. On the n-exchange pole, 
the only coupling in the t-channel helicity frame is R J ~(rn 2) Assuming that this 

,,,t=l) 
is the only helicitv coupling for all t, would then give an s-channel helicity structure 
n~s(t, m 2) = dJso(COSX(t))R~t=0(t, m2).Thus the zeroes of the d J function in t 
would be present in the s-channel helicity couplings. For J = I production this yields 
RJs lo( t  4 m2)  ~ cos X(t) ~ (t + m 2 - ~a 2) which has a zero in the physical region at 
t = - m" +ta" ~ - 0.6. At high energies, the data show [16] no sign of such a zero. 
Such zeroes can only be removed by introducing non-zero t-channel couplings to 
?~t #: O. Tile full dual resonance model vertex, indeed, contains such reggeized n- 
couplings to h t :4:0 amplitudes (vanishing at a(t)  = 0 of course). Then crossing to 
the s-channel helicity frame, the combination of contributions from different t. 
channel helicities no longer has tile crossing matrix zeroes. Appendix B establishes 
this explicitly. ForJ  = 1 production, for example, RJslo(t ,  m 2) is a constant and 
the unwanted zero is removed naturally. 

It is these additional helicity couplings of tile Regge exchange that are important. 
They emerge naturally from the dual model structure and indicate that the s-channel 
helicity amplitudes have a simpler structure in t compared to the t-channel helicity 
amplitudes. Thus tile dual model Regge vertex structure justifies the assumption of 
simple s-channel helicity couplings that have been made empirically. For instance, the 
surprising constancy [ 16] in t of the ratio ~'s of S- to P-wave nn production in 
Xs = 0 is naturally explained; this is related to the above discussion of tile filling in 
of the crossing matrix zeroes. A model approach to n.exchange [ 17] takes the s- 
channel helicity amplitudes obtained by crossing the t-channel Born term and then 
arbitrarily replaces t b y / 2  in all factors except for the essential ( -  t)½n/(lJ 2 - t) de- 
pendence. This has the feature found naturally in the dual vertices of removing the 
t-structure coming from file crossing matrix, but also goes further since it intro- 
duces an absorption correction or cut in the n = 0 amplitude which has flip at both 
Regge vertices. 

The additional Regge couplings also play a role in making the ~'t = 2 production 
amplitudes significant for t-values of the order of 1 GeV 2. Thus, taking as an ex- 
ample A 2 or K** production by natural parity exchange, the helicity ~'t = 2 or ~ = 2 
contribution can be estimated from the formulae of appendix B and will be signifi- 
cant. 
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4. Conclusion 

The most reliable component of the dual resonance model should be the vertex 
couplings for mesons on leading trajectories. Problems of daughter states, fermions, 
and unitarity corrections are thereby avoided. The Regge exchange coupling to pro- 
duce leading Regge trajectory recurrence states has been evaluated to give the follow- 
ing results. 

(a) The production amplitudes for Regge recurrence states can be predicted from 
a knowledge of the J = ! amplitude. The resonance production amplitude decreases 

1 1 as (~ e)~ ] for large J. 
with increasing J. 

(c) The variation of t-dependence with helicity and J has been discussed. Certain 
s-channel helicity amplitudes show a shrinkage of t-dependence with increasing J. 

(d) Additional Regge couplings have been found that fill in the crossing matrix 
zeroes and so yield s-channel helicity amplitudes with simple t-dependence. 

These results are simplest to apply in practice to amplitudes that are Regge be- 
haved. Experimental evidence supporting (b) and (d) has been presented. Many 
specific predictions are contained in the couplings evaluated in appendix B. A suc- 
cessful analysis of the particle-Regge.Regge coupling may then give information 
that can be used to tackle the intriguing problem of understanding why the absorp- 
tion corrections (or Regge cut effects) in the n = 0 nN -'-, nnN amplitude appear 
[ ! 8, 15] to decrease with increasing ttt 2 (or J)  relative to the n-pole contribution. 

I gratefully acknowledge discussions with P. l loyer, A.D. Martin and B. Petersson. 

Appendix A. Definitions of production amplitudes 

Consider the process a + b "-* m + e where m is a spin.J resonance of helicity X 
which decays with invariant mass m into two spinless particles c and d. in the rest 
frame of m. the direction of pc is described by spherical polar angles 0 and ~ in a 
frame with Oy normal to the a + b * m + e scattering plane and 0 z either alongpa 
in the t-channel frame or along - Pe in the s-channel frame. The helicity amplitude 
for the a + b --, c + d + e process can thus be factorized 

A ubua (s. t .m 2 . cos0 ,o )  = ~ A vbuaJ ( s , t .m  2) 
ue h 'Ue 

X [m 2 - m 2 - iml  rT(m2)] -1 Mj  dJo(cOs 0) e ix¢' (A.I) 

where Mj  is file decay matrix element of m into c + d and is related to the partial 
width by 



C. Michael. Production o[ Regge recurrences 439 

1 q IMjI 2 r tz jFcd(m 2 ) - ~ +  1 8rrm (A,2) 

The exchange of a Regge pole r of  trajectory ~ t ) ,  signature r, and lowest particle 
state of  spinj  O, then gives an a + b -+ m + e amplitude: 

AtabUaJ(s, t, m 2) = R l (t, m 2) [ -  r - e -iTr~(t)] (a:s) cz(r) ot'I'(j 0 -o t ( t ) )R~b .e ( t )  
laeh taah 

(A.3) 

R J. ~(t, m 2) is the required coupling of the exchanged reggeon r of momentum 
trata~'~fer t to the incoming particle a and the produced state of  mass m, spin J and 
helicity ~,. 

Some relations between these amplitudes and the observable differential cross 
sections are 

A. 1. Inclusive cross section a + b -* anything ÷ e. 

From the generalized optical theorem, this can be related to the discontinuity 
of the forward three-particle a + b + e  scattering amplitude A(s, t, m 2) 

do I 
- disc A(s. t, m 2) . (A.4) 

dt dm 2 128n2sq 2 

An average over helicity labels is implied. For s/m 2 large and m 2 also large, a triple 
Regge behaviour has the form 

A(s , t ,  m2)  ( s i % ( t ) ( m 2 ) % ( ° ) . . .  _ _  
m 2 ' 

(A.5) 

where a 0 is the exchange trajectory (pomeron or other) intercept in the reggeon 
( r ) .  particle (a) total cross section. 

A.2. Exclusive cross section a + b -. c + d + e. 

do 1 1 qcd AUbUa 2 
- - -  [ ( s , t , m  2 , c o s 0  ¢)1 

dt dm 2 d~2 64nsq2i (2n) 3 4m Ue ' ' 
(A.6) 

where an average over initial and sum over final helicities is implied. For s/rn 2 large 
and m 2 also large, there exists a double Regge limit with the form 
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C~r(tbe) 
~{tac) 

A ~lm-Slkz] (m 2} (A.7) 

A.3. Spin J production in a + b -" c + d + e attd resonance production. 

The Y~Lt(O, ~) moments of  the observable of  eq. ( A 6 )  can be used to try and 
extract the spin-J, helicity-;% component in the cd final state channel. Resonance 
states in this channel should have Breit-Wigner shapes in their m2-dependence. In- 

. • ~ " • - J  "~ J 2 tegrating over the resonance hne shape m m ' ,  and multtplymg by I tot(m" )/Fcd(m ) 
to correct for the branching ratio, then gives the resonance production cross sec- 
tion. Because of  unitarity, this is also related to the factorized production ampli- 
tude defined in eq. (A.I).  by 

J do - 1 ZbUa J mj2)l 2 
Px~, dt 647rsq2i I Aue~ (s. t, 

(A.8) 

where a helicity average over/a a and Pb and sum over Pc is implied. 
As a further clarification, the information contained in the m 2- or J-dependent 

observables A.I to A.3 is illustrated at the 1r-exchange pole, t =/~2. in nN--*rrrrN : 
A. I is related to o ~  t (m2); A.2 is related to (do/dt)nn(rn2, cos 0); A.3 is related to 
mj FJ(mg) .  

Appendix B. Explicit dual resonance model couplings 

Particle - Regge pole exchange - Regge recurrence production coupling residues 
RJ(t, m 2) are evaluated from dual resonance models. Isospin and signature factors 
are neglected, since the dynamical dependence on the variables is under study. Triple 
meson vertices are considered which are naturality conserving (for example n + n ~ p ,  
fo' g etc.) or naturality changing (for example n + A 2 -* p '  f0' g etc., or n + p "--, w, 
A 2 etc.). 

B. 1. Naturality conserving vertex 

From factorizing the dual n-point function B n into two pieces on a leading pole 
n.t at o¢(m 2) = J  in an internal subenergy, the following expression for the process 
a + b--, m + e arises [111 

V J 
iz I ""~J 

J 

= g2 ( v / ~ d /  f d u  ,,-t-,~{s~ (l - / , ) - i - ,~ ,~  [ ]  q,~,, - p~(l - u)). 
i--1 

(B.I) 
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This must be contracted with the polarization tensor e I (X) to obtain the 
helicity amplitudes. In the rest frame of at, where p has sl~l~er~Jal polar co-ordinates 
0 and ~, 

e J ( P f  g ( c o s 0 ) e  t~'O (B.2) p~ipU2. . ,  p U j _ _ . ~ j  dx 0 
/a l...la J 

where Cj = (~_l)! 2-J/(J  !)2. A further property of the polarization tensor is 

e J = ~ ( J - r . r ,  X2. h t l J ,  h)er~l. . .ur(ht)¢ J - r  (B.3) ~ ...ug Ur+l . . .uj  ( h 2 )  " 
kl  ~'2 

Then expanding the product in eq. (B.I) gives terms in (p~a)r( - pUtt -r  and eqs. 
(B.2) and {B.3) can be used to simplify the expression. In the s-channel helicity 
frame, - Pe is along O, and has magnitude s/2m for large-s, while Pa has z-compo- 
nent Pa cos X and x-component Pa sin × where 

"~ a 2 p~ (t) = h(m 2, t. )/4m 2 , 

Pa(t) cos X (t) = (m 2 + t - a 2)/2m , 

I 
Pa{t) sin × (t) = ( -  t)~" . (B.4) 

l%r large-s, the Rcgge limit of eq. (B. I), gives tile Rcgge residue, defined as in 
appendix A, 

_ ,  (2a')  ~1 J .  2, XJa(t,m 2) 
 /77i .7 p" ' 

where or(t) = a'(t ~ o 2) and in the s-channel helicity frame 

(a.5) 

.I (P.-, ( t ) ) ' (2~ ' 'm) ' - s  r ( -  ~ t )  + J  - r) 
XJ(t '  m2) = PaY(°2k ~ (J - r)! [ ' ( -  ~(t)) 

r=O 

(J d~o (cos × (t)) (B.6) 
+ X)!(J x_)~ l 

x ~7,x)! (r-Z x)!J 

This latter expression reduces to the product of a factor ( -  t) ~lxl and a polynomial 
in t of order J - I k I or less, 

For the t-channel frame, the result is the same as eq. (B.5) and (B,6) except for 
the interchange of r and J - r in the first three factors in tile numerator of  eq. (B.d 

On shell at or(t) = 0 tile expressions simplify to 
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X: = d J (cos X(t,")) 
~'s )'s 0 

X J 
xt = ~Sxt 0 . (B.7) 

The first term in (B.5) is the decay matrix element for m "--" a * on shell exchange 
particle. The above B n results are for a theory of scalar particles with lowest states 
at a(m 2) = O. in practice, for the naturality conserving vertex rr + (rr exchange) ~ p, 
fo'  g etc., the produced resonances have trajectories with ot(m 2) = ! as lowest state. 
This can be incorporated into a B 5 model for n + n ~ n + n + e (where e is a 
JP = 0 + state) in the same way as into the B 4 model [5, 6] for rrn -* nn. The result- 
ing B 5 expression agrees with the B 4 matrix element on shell, and gives the same 
result for the Regge vertexas eq. (B.5) except for the replacement of  the ~ factor 
in the denominator by x/(J  - I) !. 

The t-dependence of the correction factor X(t )  can be expressed, for small-t, as 

XJ(t ,  m 2) = (1 + t b J ( m  2) + O(t2))  ( -  t) [Iht. 

• -~ U 2 ' Neglecting a" and gives a general result 

(B.8) 

bJs=oh = bJht=O + J(J +~ I ) 
Itl" 

J 
J! 1 (or,m2) ,. - - J - W ~ j : ~ I !  ; 

t.~ hJt=O ttl 2 r= 2 
(B.9) 

Similarly, the t-dependence of ~x IXJ 12 is clu, racterized at s,uall-t by ~ b J 
Explicit off-shell correction l'acto~s for a 2 = 02 =/a2 and " xt=°' 

Pa = ~tn(I ~- 4p2/m 2)] ill tile s-channel helicity frame are 

x , ' ,  = , x = , 

Pa "~ X~3 = ~t {(m 2 + ,.~2) + (t - / j 2 )  (2 - l/a'm2)} , 

Pa Xi" = ( -  ] tj}t m ,  PaX  2 = - ~V r'~ t, 

3 3 = 1  "~ PaXo ~ { ( m  4 +6m2/a 2 ) + ( t - / a  2 ) (6m 2-ot3- _ , m T ~ , ) } ,  

p~X 13 3 = - ~ x / = - ~  ;C,.-" +u  2) + i t  - u2)(1 - 1 / a ; , f l ) ) ,  

pa3X3=. - ~ t t n x / ~ '  pa3 X 33 = _ ¼v~ (_ t)~ . (B.10) 
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For the t-channel frame, similarly 

Pa(tlX~= ( ' (1 3(it2-t)] Pa I t ' )  + . . . .  
m 2 _ 402 ] ' 

Pa(t)Xl x / ~ (  t _  ~2) = ~ ~ : m  
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(B.II)  

n . J .  , r . . ,%aturahty changtng vertex 

From the B 5 dual resonance model for five pseudo-scalar mesons [ 12], one can 
extract the vertex for producing natural parity meson Regge recurrences by the ex- 
change of a natural parity Regge trajectory a(t)  - I = a'(t- 02). Extracting the lead- 
ing trajectory spin J-pole in the cd channel and taking the Regge limit s ~*o, gives a 
resonance production coupling together with the decay amplitude. Factorizing off 
the decay matrix element and picking out in the s-channel helicity frame the coeffi- 
cient of d J0 (cos 0) e ~7~' (see eq. (A. I )) gives the production Regge residue 

N~..,,,2~-- (2';r '~ (J~_~_t~p~o- ,) e - t  x~(,..,'-) 
p~(v') 

j {Pa(t)),- I ( 2 a ' m y - ]  
A?,'J(t, m 2 ) = paI-J (o2) r=l ~ .... ~ ( f ~  r)i . . . . . .  

I'(-c~(t)+J~.r+ I) trlr+ I ) ( J + ~ , ) ! ( J =  ~,)!~ ~" 
X - -  i,(= .--¢=(.tj.-~. i )  ..... ~ , )0-~1)  i f"+ ),)! ( r - X ) ! ' /  

X (d~x(cosX(t))+d r (cos X(t))} (B. 12) 
- I X  

which is again a polynomial in t of order J- IX l or less together with a factor ( -  t)~ TM, 
For on-shell exchange at t = o 2 

x~(o 2, m 2) -- a ~  (cos.  (02)) + d ] t~(cos ,,to2)), (B.13) 

and in the t-channel frame 

XJx t (v2' m2) = 5xt'- 1 ' (B.14) 

Specific forms of tile off-shell correction factor in the s-channel helicity frame, 
Pa = P-, (°2) and a = It, are where 
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X~O = 0,  

x 11 = t PaX~ - m2 + °2 - u2 " , z,+,+,, , p~ x ]  = x / s T ,  

2 3= 1__[(m2+o2 la2)2+m202+(t_o2)(m2 l / a ' ) ]  
P a X I  4m 2 - , 

2 3 _ , f f _ ~ / - ~ - t  2 02 2 p X 2 _ ~ +  2-~-"" m + _ ~ 2 ) ,  P a X ] = _ ~ V ~ t .  

In the t-channel  hel ic i ty  frame 

Pa X21 = Pa (t) -t ( I - ~( t ) )  cos ×(t) 
2Ct ' m 

, .~ i - - a ( t )  . 
Pa a ;  = ' x ~ - -  sm × ( t ) .  

- 20t m 

(B.16) 

(B.17) 
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Abstract: The available charge-exchange data for zrN ~ pN, rN ~ coN and p-co interference ef- 
fects in the momentum range 6-17 GeV/c are analyzed. Duality considerations are used to 
constrain as much as possible the exchanged Regge poles and also to relate their contribu- 
tions to those made by the same Regge exchanges in rrN -~ f°N and 7rN -~ A2 N. Combined 
with an empirical investigation of the Regge cut contributions, this allows a simultaneous 
description of vector and tensor meson production. The resulting amplitudes are used to pre- 
dict interference effects in the common KK decay channel of f0 and A 2. Other predictions 
include K*(1420) and K*(1420) production, and many polarization effects. 

1. Introduction 

With the increasing abundance of data on resonance production processes, it has 
become possible to investigate closely the structure of the exchange amplitudes. The 

usefulness of a description in terms of t-channel Regge-pole exchange with s-channel 
modifications (cuts or absorption) has been confirmed [1 ]. The simplest approach 
would be to restrict the Regge-pole exchanges by dual constraints (exchange degen- 

eracy, etc.), factorization and SU(3), and to restrict the cuts to amplitudes of zero 
over-all helicity flip n. We shall pursue such a simple approach with its considerable 
predictive power and shall try to identify any possible indications for relaxing the 

constraints. 
The advent of spectrometer data on the production of higher mass resonances 

will introduce a further exciting line of investigation. Higher mass (and spin) reso- 

nances are produced in reactions that have the same exchange quantum numbers as 
their basic counterparts (e.g. nN -~ f0N or 7rN ~ gN relative to 7rN -~ pN). It is thus a 
challenge to existing theories to account for the production mechanisms of such 
states. Dual theories, both more generally through local duality applied to finite 
mass sum rules [2, 3], and more specifically from the explicit dual model vertex 
structure [4], have characteristic predictions to make. We use these ideas to make a 
preliminary study of tensor meson production based on the knowledge of vector 
meson production. 

In sect. 2, we discuss the available data ( 6 - 1 7  GeV/c) on nN ~ oN and rrN ~ coN 
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and establish models for the exchange contributions. Interference effects between p 

and co production amplitudes are observable as a result o f  p - c o  electromagnetic 
mixing in the 7rTr decay, and also from comparison with the SU(3) related pro- 
cesses KN -~ K*N and KN -~ K*N. Our decomposit ion of  the p and co production 
amplitudes into exchange contributions is consistent with data on such interference 
effects and, in sect. 3, we discuss predictions for nucleon polarization observables 
which will provide further insight into the amplitude structure. 

Armed with a model for vector meson production,  in sect. 4, we use the dual 
model expectat ions as a guide in discussing the charge-exchange tensor meson pro- 
duction reactions ~rN -+ f0N and ~rN -+ A2N. The available data are well described. 
As an additional sensitive test, we present, in sect. 5, predictions for the interference 
effects to be seen in the KK decay channel which is common to A 2 and f0. Likewise 
K*(1420) and K*(1420) production are discussed. 

Conclusions are presented in sect. 6. 

2. Vector-meson product ion 

Spin-I meson product ion on nucleons involves six helicity amplitudes which are 
connected to the observable density matrix elements as follows (see also appendix A) 

o~ = P o o d o / d t  = I P ° l  2 + IP 0 I 2 = [Pol 2 , 

°-u = (P l l  - P l - 1 ) d ° / d t  = IP~_-+ 12 + IP+-12 = IP_ 12 , 

°n = (Pl l  + P l - 1 ) d ° / d t  = I P ~ I  2 + I P ¢ - I  2 = IP+I 2 , 

~fJ  Re P l o d O / d t  = Re (P~-+P~_ + e &  P°+*_) , (2 .1 )  

where 

+ - /'1-(~t1+1 + 1 
Pf, v - v ~ ~=. Xv - H a y )  • 

Allowance [5, 6] can be made for the presence of  S-wave background under the 
P-wave vector meson signal. Thus the modulus of  X = 0 and 1 unnatural parity ex- 
change contributions (o~) and o u ) ,  their interference Re Pl0 ,  and the natural parity 
exchange contr ibut ion o n can be separated. Further  separation o f  the amplitudes 
requires, at present, assumptions about the nature of  the exchange contributions.  
In principle, however, polarization observables will allow [7] a determinat ion of  the 
moduli  and relative phases o f  each amplitude. In practice, an incomplete set o f  po- 
larization measurements (e.g. polarized target without recoil polarization analysis) 
will allow stringent tests of  the assumptions to be made about exchange amplitudes. 
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2 .1 .7r -p -+pOn 

The quantum numbers allowed in the t-channel are such that only a restricted 
set of  Regge-pole exchanges should contribute.  These are discussed in turn. 

2.1.1. rc exchange. We treat the pion as a Regge pole with a slope just like any other 
particle exchange. The proximity of  the J = 0 ~z-pole to the physical region implies 
that the Regge description is essentially the same for small t as a one-particle ex- 
change expression. From consideration of  the Chew-Frautschi plot for unnatural 
parity mesons we expect 

c~,,(t) = c£(t - / / 2 )  = 0 .82( t  - # 2 ) ,  

whe re / / i s  the pion mass and the value of  c~' comes from assuming linear exchange 
degenerate trajectories 7r - H or r / -  B. The J = 0 a-pole couples only to X t = 0 
0 mesons (k  s and X t refer respectively to s- and t-channel helicity frames). Away 
from the nonsense zero at G,( t )  = 0, however, a Regge rr t ra jectory  should couple to 
~'t =/: 0 and this contr ibut ion could become significant for - t  ~ 0.5 GeV 2. A simple 
estimate of  a reasonable strength for such a X t = 1 contr ibution comes [4] from the 
structure of  the dual resonance model vertex. This yields, for the t-channel helicity 
frame, 

< _ t)  

rrg m ( m  2 _ //2 _ 3t) (2.2) 

where m = m p  and rr t_ vanishes at t =//2 as discussed previously. In terms of  s-chan- 
nel helicity amplitudes, this takes on the simple form [4] 

(23  
7r~) nl 

The more popular assumption of  taking 7r t_ = 0 leads to rrs/Tr~ = 2 x f U { m /  
(m 2 + t - / / 2 ) ,  which is significantly different in the neighbourhood of  the zero of  
lr~) at - t  = m 2 - / / 2 .  

At the nucleon vertex, the 7r Regge trajectory couples to the helicity flip only. 
Thus its contr ibut ion to p 0 _  and P ~ _  will be in the above ratio. A simple para- 
metrizat ion for the X s = 0 ampli tude valid up to moderate t-values is 

7tO+ - _ X/-~-t'grr rn ebTrte ~iTrc~rr(t) ( PL t c~r(t) p~- - (2.4) 

//2 _ t X/m 2 -- 4//2 

where PL is lab momentum and P0 is chosen for convenience as 17.2 GeV/c. A con- 
stant factor has been included to assist the identification ofgTr with the residue of  
the t-channel 7r exchange pole (appendix A). 
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2.1.2. A2 exchange. The A 2 Regge pole may couple to the amplitudes P+_ and 
P+++. We expect a trajectory 

aA(t) = 0.5 + ct't. 

The ratio of  flip to non-flip coupling at the nucleon vertex may be related by factor- 
ization to that found in 7rN -+ r/N and KN charge exchange. In terms of  the invariant 
coupling A' and A for such processes we have A 2 exchange ratios 

A+ _ - ~ A  _ ~ ,  (2.5) 
A++ 2m N A '  r 

and thus r ~ 0.5 for the vector dominance expectation [8] A/A '  ~ -3 .7 ,  while 
r -  0.25 for the empirical values o f A / A '  ~ 8 found in effective pole fits to 
0 -  il + ~ 0-1+~ processes [9]. A parametrization for the s and t dependence of  the 
A 2 exchange pole contribution is 

, ~c~A(t)-I 

A +_ =-t'gAebAte-~i~rc~A(t)(P~o0) . (2.6) 

2.1.3. Cut contribution. The contributions from the rr and A 2 Regge poles have 
long been known [10] to be insufficient to describe the data on 7rN --, pN. In partic- 
ular, the data are non-zero in the forward direction, while the Regge contributions 
all vanish as t '  ~ 0. It is traditional [10] to incorporate a background, Regge cut, or 
absorptive correction C which does not vanish as t '  ~ 0. This can be motivated from 
s-channel Born term or dual arguments, via absorption of  low partial waves, or from 
a 7r-pomeron Regge cut. Our interest lies in an empirical description of  the data, 
however, so that we shall be content with a parametrization of  the cut C. The sim- 
plest assumption is that C only contributes to the s-channel helicity non-flip ampli- 
tude H I _ .  This leads to equal amounts of  cut in P+_ and P+_ .  The phase and ener- 
gy dependence of  C may be obtained from the experimental data and some theoreti- 
cal assumptions. Since Re PlO experimentally [6] has its extremum value relative to 
P0 and P_ ,  this implies that P0 and P_ have the same phase (phase coherence). Thus 
the phase of  C and of  the rr exchange contributions must be similar. Consideration 
of  their interference in P+ also leads to constraints [5] on their relative phase as a 
function of  t. A compromise, which also has the virtue of  being the naive absorption 
model result, is to take the phase from an effective trajectory 

ac( t )  = 0 + ½c~'t . 

The energy dependence of  the cut contribution is model-dependent - as a simple 
approximation we take the energy dependence to be given by the same effective 
trajectory as the phase. Thus the cut is approximated for convenience by an effec- 
tive (non-factorizing) pole with the above trajectory. Thus our parametrization is 
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, , a c ( t )  - 1  
+ 'brc~c(t)[.PL.t 

C + _  = C + _  = g c e b C t e  - ~  ! -~0  ] . (2.7) 

2.1.4. Our model. Our combinat ion of  rr and A 2 pole exchange and effective cut 
C differs from that of  Estabrooks et al. [ 11 ] only in details: the X t = 1 7r-exchange 
coupling and the A 2 nucleon non-flip couplings are retained. A further possible con- 
t r ibut ion - with A 1 quantum number exchange - will be reconsidered subsequently. 
Thus we have, in the s-channel helicity frame 

20 

10 

E < 

- t '  GeV 2 

005 01 02 0.3 04 05 
i - - - I  i i 

~ z N ~ p N  

17.2 GeV/c 

s channe[ heticity 
{ amptitudes 

P0 

IP-I 

0 0.2 0.4 06 
~fS"f, GeV 

Fig. 1. The moduli of  the production amplitudes for r r -p  --, p °n  at 17.2 GeV/c. The points are 
the s-channel helicity amplitudes of  ref. [ 12] extracted from the data of  ref, [ 13] and the curves 
are the fit o f  the model described in the text. For clarity, z IP_[ is plotted to exhibit the 180 ° 
phase change of  P+_  near ~ = 0.15 GeV. 
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Table 1 
Parameters for the models defined in the text in subsect. 2.1 0z p ~ o°n), subsect. 2.2 (rr-p 
coon) and subsect. 4.1 (rr-p ~ f°n) [Quantities in square brackets were not varied in the fits; 
the normalization ofgrr is calculated in appendix A. ] 

lrN-~ pN 

grr gA/g~r gc/grr brr b A b c  r 

( x / ~  (GeV -3) (GeV -1) (GeV 2) (GeV-2) (GeV 2) (GeV) 

[6.0] 5.17 -1.42 4.51 3.24 6.45 [0.5] 

nN ~ coN 

gB go/gA gz/gu CB/gB Cp/gB bOB 2 bco 2 
( x / ~  (GeV) (GeV -1) (GeV -1) ( G e V - )  ( G e V - )  

6.0 2.0 0.54 -0.20 -0.048 0.97 [= bCB ] 

7rN ~ fo N 

gTr gA/grr gc/grr gCz/grr brr bA bc 
( x / ~  (GeV -3) (GeV - l )  (GeV 2) (GeV-2) (GeV-2) (GeV 2) 

[8.4] 1.35 -0.84 -0.575 [4,51] [3.24] 3.89 

=.o+_ , e o + _ - o ,  

1 , ;  = + c+ e++ = o, 
t s! + -  - ' 

V 

+ _ + + _ + 
P+_ - A + _  +C+_ , P++ -A++ . (2.8) 

The moduli  o f P 0 , P  - andP+ obtained [11,12] from an analysis o f  the 17.2 GeV/c 
n - p  -+ 7r+Tr-n data [13] determine the parameters introduced above. The normal- 
ization (see appendix A) fixes g~r; bTr is given by the t dependence of  P0; the small 
t-value of  P+ o r P _  y ie ldsgc ;  the t dependence of  P_  constrains b C and then the 
shape of  P+ as a function of  t is sufficient to determine gA and b A. The fit is shown 
in fig. 1. Parameters are given in table 1. 

The energy dependence [ 11, 14] from 6 - 1 7 . 2  GeV/c is then a stringent cross 
check on the above determination.  The break seen [14] at 4 - 6  GeV/c in the t de- 
pendence o f  P6 is not accounted for, but the energy dependence out to t ~ - 0 . 3  is 
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0.5 

C~EF F 

o 

P+ n;N~pN 

O2 0~ 0.6 
- t  GeV2 

Fig. 2. aeff for IP+[ 2 as extracted from the 6 GeV/e [14] and 17.2 GeV/c [13] n p -+ o°n data 
in ref. [ 11 ] and the prediction of the model (curve). The trajectories assumed for the rr, A2 and 
cut C contributions are 'also shown. 

satisfactory. Among other possibilities, either a n trajectory of  slope l a !  exactly 
phase coherent with the cut C, or a small low-lying correction to P~ could be toler- 
ated by the data. The energy dependence of  P s_ is in agreement with our model, 
while the crucial test comes from c%ff for P+ as shown in fig. 2. Here the striking 
relative increase of  natural parity exchange from 6 to 17.2 GeV/c is accounted for 
by the A++ contr ibut ion at small t, the A++ - C+_ destructive interference at mod- 
erate t, and the A 2 dominance at larger t. Previous interpretations [15] of  nN-+ oN 
data have had much larger C contributions relative to A 2 at t ~ - 0 . 3  to - 0 . 5 ,  so 
that a much lower value of  aef f [close to ac ( t ) ]  had been expected. 

Our fit with the dual model estimate of  nt_/n~ (eq. (2.2)) is a considerable im- 
provement over taking n t_ zero when P~) would have had a zero at t ~ - 0 . 5  and the 
cut would have [11] a much flatter t dependence (b C ~ 1.0). As a compromise,  one 
can take n t_/n D at about 0.5 of  the dual vertex value eq. (2.2) when the cut t de- 
pendence is very reasonable (b c ~ 3.0). An equally acceptable fit can then be ob- 
tained by allowing r to be reduced to 0.25. This compromise description gives a sim- 
ilar value of  aef f for P+, and allows an improved description of  the p - c o  interference 
phases. Since our present aim is to retain as simple a description as possible in order 
to extend our analysis to the f0 production amplitudes, we shall retain the dual 
model expression for rrt_/rr~) of  eq. (2.2). 

2.2. 7rN -* coN 

We again discuss in turn the various expected exchange contributions. We con- 
sider data for the average o f n - p  -+ con and ~+n --~ cop so that any possible [15] ~r 
exchange via O-co electromagnetic mixing will not contribute.  
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2.2.1. B exchange. The unnatural parity meson spectrum is consistent with rr - H 
and r~ - B exchange degenerate trajectories split apart by about 0.23. Thus we take 
the B trajectory as 

c~ B = - 0 . 2 5  + c~'t. 

To allow for the splitting of  the trajectories, and relate B to n by exchange degen- 
eracy, we use 

)c~ B C%r 
B _  gB F ( - a B )  sinlnaB - ~ i ~ ( a B - ~ ) ( P L  (2.9t 

n gn F(-c~. )  cos½nc~rr ie \ P o  / 

For strong exchange degeneracy we would have gB = gn ; however since c~vr 4= (x B 
this comparison depends on p~.  A dual theory would lead to comparison at c~'s = 1 

or PL = 1/(2raNCh') which yields gB = 0.5 g~ as an expectation. The helicity couplings 
of  the B exchange are taken from the same model as for the n (eq. (2.3)). The dual 
vertex factor ensures a pure X t = 0 coupling at a( t )  = 0 but can also be evaluated at 
c~(t) = 1. This yields, at t = rnB,42 a ratio of  co production with X t = 0 to all of  0.2. 
This can be compared directly with the branching fraction of  co with X t = 0 in B 
decay to con which experimentally is quoted [16] as 0 .10-0 .16 .  Thus the dual vertex 
factor successfully reproduces the predominant X t = 1 coupling at c~(t) = 1, the B 
mass value. 

2.2.2. p exchange. This is expected to be exchange degenerate with the A 2 ex- 
change in p production and we write c~p(t) = C~A(t ) and 

p _ go i tan ½ nc~ A , (2.10) 
A2 gA 

where go = gA for strong exchange degeneracy of  the couplings. 

2.2.3. Cut C. The B-pole contr ibut ion discussed above gives rise to phase coher- 
ence for P_ and P0 and a specific ratio from eq. (2.3). The p contr ibut ion has a dip 
at ap( t )  = 0 in P+. To take account of  possible deviations from these expectations in 
the data, we introduce a cut in the n = 0 amplitude. Guided by the absorption model 
expectation o f  cuts mainly 180 ° out o f  phase with their respective poles, we para- 
metrize the phase and t dependence of  the cut as 

C~c(t)-I 
+ (ie-~ilrc~B(t)cBebCB t . - ~ i n c ~ ( t )  bc~t,(PL] (2.11) 

As discussed subsequently, data imply C B > Co, so we take C~c(t ) = C~B(t ) for the 
energy dependence o f  the cut. 

2.2.4. JPCI = 2 -  + 1 exchange. Unnatural parity exchange amplitudes in vector 
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meson production with nucleon non-flip coupling can only receive contributions 
from the exchange of  axial mesons (A 1 - D nonet) and their jPC = 2 + exchange 
degenerate partners (no resonance state known). Thus in ~rN -+ oN, A 1 exchange 
could contribute, but aside from other problems the A 1 contribution has a zero at 
a(t)  = 0 (from signature and absense of  known jPC = 0 - +  state), while the 7r con- 
tribution has a pole at c~(t) = 0. Thus the 7r is doubly favoured over the A 1 at 
c~(t) ~ 0. Conversely, in w production, the B exchange contribution has a signature 
zero at c~(t) = 0, while the Z (JPI G = 2 - 1  +) exchange contribution would not 
vanish at c~(t) ~ 0 and could be relatively important. The only clue for the helicity 
coupling of  Z exchange at the meson vertex comes from the ratio of  A 1 ~ p(X) + 7r 
with )t = 0 and 1 in models [17]. This leads to a dominant ;~t = 0 coupling and for 
simplicity we use eq. (2.3) to give the s-channel Z~-+ to Z0+ coupling ratio. For the 
t dependence of  Z exchange, we make the economical assumption that all the unnat- 
ural parity exchanges have similar slopes which leads to 

Z++ gz/gl3 c°sliTrc~z " ~Z-~B Y(1 - ~Z) ~P__LL 

B + _ - v / Z t  v sin~iTr~ B P(---~B) \Po] ' (2.12) 

where gz  controls the strength (sign unknown) and c~ z is taken as 0 + c(t. 
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2.2.5. Our model. In summary the contributions considered are 

p0 :B0 e0+ :z0+ 
+ , 

P+_=B+ +C+_ , P + + = Z + + ,  

+ + + + + (2.13) P+_  = p + _  + C+_ , P++ = p++ . 

Insufficient data on 7TN -+ coN exist to extract a reliable energy dependence of  
the different components.  Thus we consider data [18, 19] in the region of  6 GeV/c, 
where it is best measured, and at tempt  to describe it with the above contributions 
linked to the previous model for p production.  Some information from p - c o  inter- 

ference phases is also anticipated. 
Setting gz  = 0, a considerable breaking of  exchange degenerary for B is necessary 

(three times expectat ion) and the large experimental  value of  P00 at small t is not repro- 
duced. The latter can be achieved readily by including a Z exchange contribution.  
The parameters of  a satisfactory description of  the data (see fig. 3) are shown in 
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table 1. As shown in the Argand diagram of fig. 4, the cut C has its phase mainly 
antiparallel to B_ to achieve the required P+/P_ ratio (Pl 1 large and positive). A 
small contribution (Cp) antiparallel to p serves to swing the resultant of P ~  anti- 
clockwise into better agreement with the p-co interference phase data (sect. 3). 
One unpleasant feature is that go/gA ~ 2, unlike the dual expectation of unity. This 
might be caused by normalization uncertainties in comparing the crosssection for 
producing a wide resonance (p) with a narrow one (co). However, in appendix A we 
discuss such normalization questions and no major uncertainty seems present. 

A direct test of this exchange decomposition of co production is in the energy 
dependence to higher energies and fig. 3 shows the 17 GeV/c prediction. 

3. Polarization and interference effects in vector-meson production 

The decomposition of the p and co amplitudes discussed in sect. 2 is shown in the 
Argand diagrams of fig. 4. Characteristic features are the t and s depenence of the 
phase of P +_ for p production, due to the interference between the cut C and A 2 
contributions. The phase of C °o is rather constant with energy and momentum 
transfer and influences the phases of P_+ for co production as previously discussed. 
The non-flip nucleon couplings to Z, p and A 2 are also all significant and will give 
substantial polarization effects. 

3.1. Interference effects 

The relative phases of p and co production amplitudes are observable from the 
electromagnetic p-co mixing in the 7rrr decay channel and via SU(3) from a compar- 
ison of K* and K *0 production. The p-co mixing in observable Pi (i.e. P+, P or P0) 
is controlled [20] by the bilinear combination of production amplitudes 

i , +eg+ (co),  e + + ( p ) e  + + ( c o )  _ _ 

1 ! 

__ ~+[ipi+(p)12 + [pi+_(p)[2]~ [ipi+(co)[2 + [ei (co)12]~ eiOi.  (3.1) 

Thus the relative phase Oi can be measured directly (with no ambiguities), while the 
coherence ~i can only be determined if the o~ -~ 7rn branching ratio is well known. 
The relation to K* production from SU(3) is 

-- pi(co) + p i ( , ) ,  V -e;(K : e (co) - P ; ( , ) ,  (3.2) 

where the phases are such that K* production would be real for exchange degenerate 
Regge poles in p and co production. Thus for observables: 

i p i ( K , ) 1 2 _ l p i ( ~ ) i 2 = 2 R e  [p++(p)p++(co)i i , +pi+ _ ( p ) p i  _ (co)* ] 

= 2~i[IPi++(p)l 2 + Ip i_ (p )12]  ~ [IP~+(co)l 2 + IPi (co)12] ~- cos 0i .  (3.3) 
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Table 2 
p-co interference phases 

293 

Amplitude - t  6 GeV/c 17.2 GeV/c 

(GeV z) 4, ~ 4' data 4, ~ 4, data 
(degree) (degree) (degree) (degree) 

0-0.08 69 0.54 70 _+ 30 69 0.43 
Po 0.08-0.2 69 0.77 69 0.68 

0.2 -0.45 69 0.81 45 ± 30 69 0.84 

0 0.08 218 0.47 218 0.36 
P 0.08-0.2 106 0.38 70 -+ 25 106 0.32 

0.2 -0,45 87 0.71 120+- 15 87 0.64 

0-0.08 93 0.36 75 +- 30 180 0.19 
P+ 0.08-0,2 188 0.38 140 ± 20 241 0.64 

0.2 -0.45 241 0.84 170-+ 20 255 0.95 
205 -+ 15 
230 +- 7 

The phase (4,) and coherence (~) are defined in the text (eq. (3.1)). The preliminary data for 4, is 
taken from refs. [14] (6 GeV/c) and [11] (17.2 GeV/c). The observed strength ofo co inter- 
terence effects in nN --, ncrN data is controlled by ~F(co ~ nn). Compared to the usual assump- 
tion of complete coherence (~ = 1), our predictions for ~ will result in values of I'(to ~ rrn) 
enhanced by 1/~. 

L 

Thus the difference of K* and K* observables yields similar information to p-co  

interference, but uses the assumption of SU(3) and gives only ~i cos ~i. The relative 
normalization of K* and K* is also difficult to obtain with good precision experi- 
mentally. A comparison with preliminary p - a )  interference and K* - K* data at 

6 GeV/c [14] is presented in table 2 and fig. 5. The two types of data agree general- 
ly with each other and with the expectations of our models for p and co production. 

Since the co ~ rrn branching ratio is not well determined, the coherence ~ has not 
been determined experimentally. The relative coherence, however, is found [14] to 

be smaller for P+ than for P_  or P0 and this is in general accord with our expecta- 
f + tions. The change in phase with increasing I tl o P++ for p production as the A 2 

takes over from the cut combined with the relatively important P+ contributions ++ 
yields a too-pronounced swing in p co interference phase for P+. This feature can 
be improved by resorting to the solution (sect. 2) for p production with n t / ~  re- 
duced and a consequent less steep t dependence of the cut and less dominant" P+++ 

o 
contributions. The phase of 90 between the B and 7r exchange in P0, and the 
phase of ~> 90 ° between P and co production in P_ are well reproduced by our 
model amplitudes. A strong energy dependence of the p-co phase for P+ is also in- 
dicated in table 2. 

The K* and K* charge-exchange observables are in acceptable agreement except 
1 for P_ .  Here, aside from a small effect due to g PSS present in the data, the effects 

of SU(3) breaking must be considered. This could be due to cuts which are not SU(3) 
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Fig. 5. Our SU(3) prediction and K* production data at 6 GeV/c (pHoo(do/dt), ( ,oH +- olH_I ) 
(do/dt)). For the comparison with the preliminary data of ref. [14], which contains ~ PSS in 
each component and uses the mass cut (0.83 < mKn < 0.95 GeV), the prediction has been mul- 
tiplied by a factor 0.443. 

octets in the t -channel  - a serious possibility since the pomeron  exchange is no t  
empirically an SU(3) singlet and also Regge-Regge cuts can cont r ibute .  An alterna- 
tive exp lanan t ion  lies in SU(3) b roken  mass values which enter into the expression 
for the crossing matr ix  used to ob ta in  the s-channel 7r exchange cont r ibut ions  to P_  
from the t -channel  expressions in which X t = 0 is dominan t  (eq. (2.2)).  Thus for the 

vertex a -~  m by  n exchange 

rrs- 2 r n , ~  -L-- t '  w 

7r~ m 2 + / ~ 2 _ a  2 
(3.4) 
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This ratio is larger for K -+ K* than for 7r -+ p processes. Thus in agreement with the 
data, a larger value o f P  /Po for K* (or K*) compared to p would be expected since 
the destructive interference of  the cut enhances the effect beyond t = - /a  2. 

3.2. Polarization effects 

Fig. 6 shows predictions for p and co production polarization, as well as for 
7N ~ 7r+N where vector dominance (7 - P 6o/2.8) has been used. The polarization 
plotted,  Pn, is that arising from natural parity exchange alone 

= lm tp+  P+* "~ Po =Pnort +Puou . (3.5) Pnon - 2 .  v-++ +_J , 

In our model Pu is zero for P production and thus for p production and to a good 
approximation for photoproduct ion Pn can be equated with Po/on,  which is the 
quanti ty plot ted as data [21 ] in fig. 6. The structure in the polarization arises from 
the phase of  P + _ ,  which swings from the phase of  C p to that of  A 2 as It I increases 
and which thus passes through 90 ° relative to P+++ = A++ at an intermediate t-value. 
The energy dependence o f P  N for nN --, pN and 7N ~ 7r+N is also characteristic of  
our model  with its significant A 2 - CO interference which shifts with energy. 

Pu for co product ion depends on the sign of  the Z contr ibution which has not 
been determined.  The effect of  introducing an exchange degenerate A 1 contr ibut ion 
in 7rN ~ pn will be very small as argued previously and this is shown quantitatively 
for our choice of  A 1 - Z  trajectory in table 3. Such small A 1/Tr ratios will not affect 
differential cross section and density matrix observables in which they enter qua- 
dratically, while polarization effects are linear in A 1/Tr and so could become signifi- 
cant at I tl  ~ 0.3 or larger. 

0 I i I I I 

16 Ge 

-0.5 ~ ~ N  

- 1 . 0  I 1 l i i I 

I I i i i i 

0 5 G eyf  I 

I ~ / .L-yN~n~N 
- - 1 , 0  / I I I I I 

o 0.2 0.4 
- t  

17.2 Ge~" 1 

t l/ "~ N~pN 
I T"'t i i A I-1.0 

, , , , , 0 °-z 

V T~ N ~w N 
I I I I I I O 

o 0.2 0.4 
GeV 2 

Fig. 6. Predicted nucleon polarization in vector meson production. The more reliably estimated 
natural parity exchange component (see eq. (3.5)) is shown. The prediction for "rP -~ ~r+n ob- 
tained from vector dominance is compared with data [21] at 5 and 16 GeV/c. 
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Table 3 
The ratio of  z(JPI  G = 2 - 1  +) to B exchange in helicity zero amplitudes at 17.2 GeV/c (as de- 
duced from our model) and the exchange degeneracy prediction for the equivalent quantity A1 fir 
in 0 production 

- t  IZo/Bol IAlo/Tvol 
(GeV 2 ) 

0.05 1.76 0.0094 
0.1 1.24 0.023 
0.3 0.67 0.112 

Further polarized target observables can be measured [7] with the target polar- 
ization in the scattering plane. Quantities which are interference effects between 
natural and unnatural parity exchange can then be analysed. Thus the relative phase 
of P O_ n + a d P++, for instance, can be tested in rrN ~ oN. Such observables can be 
constructed from our parametrizations for the amplitudes and checked from the 
Argand diagrams of fig. 4. 

4. Tensor meson production 

4.1. Introduction 

Spin-2 meson production on nucleons involves 10 helicity amplitudes which are 
related to density matrix elements and decay angular distribution moments as de- 
scribed in appendix A. The combinations which correspond to specific exchange 
naturality are 

1-+_ 1 1 2 + - _ 1  2 H ~ .  (4.1) 

D 1 + and D 2+ are the natural parity exchange amplitudes. 
For spin-2 production, removing the spin 0 and 1 background in the decay 

channel is much more difficult than the analogous problem for spin-1 production. 
The presently available data on tensor meson production are also considerably less 
complete than for the vector production we have discussed. This leads us to try to 
combine our models for the exchange amplitudes in vector meson production with 
some additional theoretical input to describe the tensor meson amplitudes. This 
proves very useful as a preliminary study of tensor meson production. 

Application of local duality to Regge + particle total cross sections [2] or to 
Regge + particle -+ particle + particle amplitudes [3] allows a general discussion of 
the relative production mechanisms for states of different mass but similar exchange 
quantum numbers. A much more specific analysis can be made by employing [4] 
the Regge recurrence production vertices in the dual resonance model. The latter 
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(dual boost model) yields specific expressions for the t dependence and helicity de- 
pendence of  the Regge-pole exchange vertices for producing states on the same 
Regge trajectory (e.g. p f - g  or c~-A2).  We shall employ and investigate such dual 
model relations. The other necessary contribution, the cuts, will be deduced from 
the experimental data as far as possible. 

4.2. 7rN ~ f O N  

The exchange contributions will be the same as those for 7rN -+ oN discussed in 
sect. 2 and we present here the "dual boost" predictions for f0 production relative 
to O. 

4.2.1. n exchange. At t = ~t 2 the coupling reduces to the relevant partial decay width 
to nn. The dual boost prediction of  Ff ~ 0.85 Pp is smaller than the experimental 
[6] ratio Ff - 1.03 Yo" However, the discrepancy is not serious a factor of  1.1 in 
the production amplitude only. Our f0 model is normalized to the experimental 
width as described in appendix A. 

The k t = 0, 1 ,2 or k s = 0, 1,2 contributions from Reggeized 7r exchange have 
been calculated [4]. In the s-channel the helicity coupling ratios, normalized to 1 at 
t =/l  2 for k t = 0, are given by 

2 s 1 PaXO =~[rn 2 +2/~ 2 + ( t - u  2) (2-1 /c~ ' rn2) ]  , 

2 s 
PaX1 _ 

PAX22 s = - ½ x / 3 t '  , (4.2) 

where 4p 2 = m 2 - 4/12 and m is the tensor meson mass. The t-dependence of  fo pro- 
duction relative to p production is given by the dual vertex factor 

1 , P , c ~ ( t )  
1 

lri _ f s ~ / ~ e b n t  e-~in~n(t)~ L~ 
+-  -gTr X i  ta 2 _ t \ ~ 0 1  (4.3) 

Compared to eq..(2.4), the only difference in t-dependence comes from the factor 
X s. Thus for k s = 0, n 0+_ is a steeper function of  t for f0 production than for O pro- 
duction, since X~) is at small t equivalent to an exponential with slope 0 9  GeV -2 .  
This is a very clean prediction, characteristic of  the dual vertex factor, since the 
more general dual approaches [2, 3] predict, on the contrary, an f0 t-dependence 
less steep than for the P. These latter approaches are, however, less specific since 
they apply to the sum of  all helicity contributions. 

4.2.2. A 2 exchange. The ratio of  natural parity exchange to unnatural parity ex- 
change is expected to decrease with higher masses produced in all dual-based ap- 
proaches [2, 4]. The specific "dual boost"  model gives gA/g~r ~ 0.7 of  the o-produc- 
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tion ratio. The ratio ofX s = 2 to X s = 1 is also specified: 

A 2+ 2 m x / 7 ~  

A 1+ - m 2 + U2 _//2'  (4.4) 

where aA2 (v 2) = 1. 
The t-dependence of  A 1+ is expected to be the same for f0 as p production and 

the ratio r of  ++ to + -  nucleon couplings is also retained. 

1+ e-~ iTraA(t ) ( PL ~ aA(t)-I 
A+_ = --gA t'ebAt \~0]  (4.5) 

4.2.3. C exchange. In specific absorption models, the cut strength is tied to the 7r- 
pole strength and t dependence. Thus no substantial change from p to f0 would 
have been expected. In practice, data show [6, 22] a reduction in gc/g,~ (at small t) 
of  ~ 0.7 in going from the p to f0. No explanation exists except for the possibility 
that some of  the cut could come from A 2 absorption which would then decrease by 
such a factor as discussed above. Data analysis also indicates [12] the necessity of  

• • 2 • . . , .  , 3 _  

a n  n = 1 cut in the amplitude H+_  which vanishes like x / 7 7  instead of  ( - t ) 5  as the 
pole contributions. Thus we choose a parametrization 

cl+ +- = C1-- = g c  ebCt e-~i 'ac(t)(PL ) c~C(t)-I 

\ 7  ! 

2+ C 2 -  ~/77rgc2 ebC t -~iTrac(t)[PL~ c~C(t)-I 
C+ _ = = e ~770 ] , (4.6) 

where C~c(t ) is chosen the same as for p production. 

4.2.4. Our model. In summary our exchange contribution are 

D 0_ = frO_, 

1-=rr+l~ + c l ~  1+ _ 1+ CI++_, D++=A++, D+_ , D+_  - A + _  + 1+ 1+ 

D2~  = n2~ + C 2-+_ , D+_2+ -A+_- 2+ + C2+_, D++2+ = A++.2+ (4.7) 

A complete separation o f J  = 2 effects from J = 0 and 1 in the f0 region exists 
[12] at 17.2 GeV/c. This was achieved by parameterizing the f0 production ampli- 
tudes and we show the result in fig. 7. Our dual boost plus p-production model ap- 
proach is easily able to reproduce the amplitudes as shown in the figure. The para- 
meters are given in table 1. In this description o f  fo amplitudes the 7r contributions 
were completely fixed as described above; the A 2 contributions were fixed except 
for gA/g, which is forced to be substantially smaller than the dual value; gc ,  bc  and 
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Fig. 7. The t "° product ion  amplitudes at 17.2 GeV/c. The points are the amplitudes as extracted 
in ref. [12] and the curves are our model  reconstruct ion o f  them. 

gcz were free and obtain reasonable values. Thus the dual vertex factors with little 
freedom reproduce the whole complex structure of the f0 production amplitudes. 
In particular, D O is given entirely by the 7r contribution and the shrinkage of  slope 
compared to p production is exactly predicted. The fraction of  natural parity ex- 
change in f0 production is relatively small as predicted by the dual approaches and 
is consequently not well determined. We are thus unable to confirm the expected 
decrease in gA/g~ from p to f of  0.7. Our f0 production amplitudes are consistent 
with lower energy data. Such data exist either as bounds on J = 2 contributions [23] 
or with specific background assumptions [19] to separate out the f0 component 
(see fig. 8). 
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Fig. 8. f0 and A 2 production differential cross sections at 5.1 GeV/c. The points are those of 
ref. [19] and the curve is the model prediction. 

4.3. 7rN ~ A2N charge exchange 

Available data on ~r-p -+ A0n or 7r+n -> A0p afford little help in constructing a 
model. A combinat ion of  exchange degeneracy relations applied to 7rN ~ f0N, and 
dual boost relations applied to ~N --, coN give strong predictive power. The more so, 
since exchange degeneracy breaking has been investigated while comparing 
7rN --, oN with 7rN -+ coN and the dual boost relations have been tested in going from 
~N -+ pN to 7rN --, f0N. For the individual exchanges we assume the following. 

4.3.1. B exchange. This is taken as exchange degenerate with the fo product ion 
exchange contributions employing the same B/Tr ratio as eq. (2.9) with gB/gTr fixed 

at the O-co value. 

4.3.2. P exchange. This is taken as exchange degenerate to the A 2 exchange am- 
plitudes in f0 product ion together with the factor go/gA -- 2 used in relating p to co 
production (eq. (2.10)). Note that this factor of  2 largely compensates for the fact 
that the gA/gn ratio in f0 product ion was much less than the dual boost  value from 
P production.  That the dual prediction persists is not unreasonable, since p exchange 
in ~ ~ A 2 shares the same coupling as A 2 exchange in n --* p when evaluated at the 
common A 2 pole and p pole. 
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4.3.3. Z exchange. The ratio of Z to B is as in eq. (2.12) with gz/gB fixed at the 
co production value (table 1) and B exchange as above. 

4.3.4. Cut contributions. The effective cut in co production (C/gB)co is scaled by 
the same factor as the f0 cut is in relation to the p cut: 

(C/gB)A2 = (C/gB)w (gc/g~r)fo (gc/gn)p 1 . (4.8) 

The t dependence of  the co cut is already very flat, so that it is maintained un- 
changed for the A 2 production cut. In the same spirit, we also introduce an helicity 
2 cut with the ratio of  C2/C the same as in f0 production (gc2/gc). 

4.3,5. Our model. In summary, the exchange contributions are 

0 0 i = i i D~_ = p{_ + C~ D + _ = B + _ ,  D+_ B + _ + C + _  , 

DO+=zO+, D~+ =Zi+, D+/+=p/++, (4.9) 

wherei= 1-,2 and/= 1+,2+. 
The model is completely specified in advance by a mixture of  theoretical and 

phenomenological constraints. The predicted differential cross section for A 2 pro- 
duction is compared with some data at 5.1 GeV/c [19] in fig. 8 and the agreement 
is seen to be reasonable. Better data in the 3~ or r/Tr decay mode, including density 
matrix elements or decay moments, would be of  great interest in testing our ideas 
for the charge-exchange production of  A 2 . 

Mearge evidence [24] on the energy dependence of  7r+n ~ A0p suggests a de- 
crease of  cross section with %rf ~ 0 consistent with the dominant unnatural ex- 
change in our model. 

Finally, in this section, we review the status of  the dual boost factors which 
proved so useful in constructing tensor meson production amplitudes: In relating f0 
production to p production, the 7r exchange contribution is completely specified. 
The agreement is reasonable for the normalization (Ff/I'o), and excellent for the 
t-dependence o f  the X s = 0 amplitude (b f b~ ~ 0.9 GeV-2).  The helicity struc- 
ture proposed also avoids the problem of crossing matrix zeros in P0 and D O and at 
the same time gives a satisfactory account of  the measured helicity couplings on the 
exchange degenerate B-meson pole (B ~ co~ dominantly X,~ = 1). The expected 
suppression of  natural parity exchange relative to unnatural parity exchange in 
going from 0 to f0 production is found in our analysis, but is stronger than antici- 
pated. The same comparison between w and A 2 production is closer to the expecta- 
tion o f  the dual vertex model. A similar comparison of  natural parity exchanges in 
data for ~rN -,  pN and ~rN -+ A2N with I t = 0 also suggests [ 1 ] that they decrease 
somewhat more rapidly for the production of  higher spin resonances than in the 
model. 
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5. Interference effects in f0 and A 2 production 

An Argand diagram of  the f0 and A 2 production amplitudes of  our model at 
17.2 GeV/c is shown in fig. 9. Compared to the O-co situation (fig. 4) the most 
noticeable difference lies in D~+ which is dominated by the cut and so remains near 
180 ° compared to of+. Thus (unlike p, co production) the phase difference be- 
tween f0 and A 2 natural parity production amplitudes varies little with - t  (~  120°). 
The dominant unnatural parity-exchange amplitudes have a phase approximately 90 ° 
ahead for f production compared to A 2 production. 

Just as for p and a) production, the relative phase between f0 and A 2 production 
amplitudes is observable - and in two independent ways. The K*(1420) and 
K~(1420) charge-exchange production reactions are related by SU(3) to f0 and A 2 
analogously to eqs. (3.2) and (3.3). Fig. 10 shows the prediction of  our model for 
the production cross-sections of  these mesons compared with data [25, 26] near 4 
GeV/c. Normalization uncertainties, particularly with a deuterium target, make this 
a rather imprecise test. Relatively well normalized data with density matrix element 
information would be needed to investigate the interference effects properly. 

f °AND A z PRODUCTION AMPLITUDES AT 172 GeV/c 

- t  = 0.1 OeV2 

t* 01_ 

o~~:. 
- DJ 

0 5 
-t = 0.3 OeV ~ I , ~ i ~ l(l~b)~ GeV -~ 

DI 

Fig. 9. Argand diagram of the model nucleon flip amplitudes for f0 (solid lines) and A 2 (dotted) 
production at 17.2 GeV/c at - t  = 0.1 and 0.3 GeV 2. For clarity the (exceedingly small) ampli- 
tudes D A2 are not shown. 
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Fig. 10. Comparison of our SU(3) predictions for K-p --, ~ o  (1420)n (solid line) and 
K+n --* K*°(1420)p (dotted line) with the 4.2 GeV/c data [25, 26] (solid and open points, re- 
spectively). The 4.6 GeV/c deuterium data of ref. [26] has been scaled by (4.2/4.6) -2 to an ef- 
fective momentum of 4.2 GeV/c. 

A more complete test in principle, analogous to p -co  interference, is provided 
[27] by the common decay channel of  f0 and A 2 into KK. Both mesons can decay 
by strong interactions with comparable strength into K0K 0 and K+K and inter- 
ferences between their combined production and decay amplitudes will result. Gen- 
eralizing eqs. (A.3)- (A.7)  of  appendix A this gives observable combinations of  the 
form 

[Fi~(s, t ) B f (m)  + Ai~(s, t) BAe(m)[  2 , (5.1) 
# 

where F~ and A~ (i = 0, 1- +, 2 +) represent production amplitudes (assumed approximately 
constant in KK invariant mass m) and B f and B A2 are the decay factors of  eq. (A.5). 
The phase and modulus o f  these decay factors are illustrated in fig. 11. The mass, 
width and branching ratio parameters used are collected in appendix B. The relative 
phase 5f - (~h2 of  the f0 and A2 resonance decay factors is also shown as a function 
of  KK mass in fig. 11. This is of  interest since it is the variation o f  this phase with m 
that allows the ambiguity in the sign of  the relative f and A 2 production phase to be 
resolved. Thus, like p - c o  interference, a more complete measurement is possible in 
principle and with no SU(3) assumptions. The relevance of  the relative phase de- 
pending on m is understood on considering the interference term in eq. (5.1): 
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Fig. 1 l. The modulus and phase of the fo ~ K+K - (full curve) and A 2 ~ K+K - (double-dotted 
curve) Breit-Wigner decay amplitudes B(mK~) [eq. (A.5)]. The mass, width and branching 
ratios used are discussed in appendix B. We also compare the resonance phase differences 
6 f-5 A2 (single-dotted curve) and 50-8 ¢o (dashed) where the mass scales are chosen to coincide 
at mK~ = 1270, m~rrr = 770 MeV ((m, F) o = (772, 143); (m, I')co = (784, 10) MeV). 

Re(FiuAi~.Bf(m)B a2 (m)*) 
/a 

[Aul } IBf(m)[ IBA2(m)lcos((~i + 6f(m)- 8Az(m)). 
u u (5.2) 

The known m variation of  B and thus 5 then allows the f - A  2 relative production 
phase ~b i to be uniquely determined. 

In practice this effect can be well controlled since, because of  isospin, the f 0 - A  2 
interference changes sign both with the change from proton to neutron target (as for 
O-CO interference) and with the change from K+K - to K0K 0 decay channel. An 
easy way to visualize the respective signs for the four relevant processes is via duality 
diagrams as shown in fig. 12. Thus processes (b) and (c) l r -p  -+ K - K + n  and 
~+n -+ KOK.0p have real production phase duality diagrams (like KN -+ K*(1420)N) 
while (a) and (d), 7r-p -+ KOK0n and rr+n -+ K+K-p ,  have rotating phase (like 
K.N -+ K*(1420)N). Thus for processes (b) or (c) the production phases will be as 
drawn for the Argand diagram of  fig. 9, while for (a) or (d) an extra 180 ° is needed. 
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Fig. 12. Duality diagrams for the four processes: (a) Ir-p -~ K°K°n, (b) lr-p ~ K-K+n, (c) 
n+n ~ K°K.°p and (d) ~r+n ~ K+K-p. 
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Fig. 13. The predicted KK mass spectrum (I t l < 0.5 GeV 2) for n - p  ~ K+K-n and 
~r-p ~ K°K.° n at 12 GeV/c is compared with the n - p  ~ K~K~n data of ref. [29]. 
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Fig. 14. The predicted mass spectrum do/din of 7r-p ~ KKn at 17.2 GeV/c integrated over 
It[ < 0.5 GeV 2 ((a) (b) and (c)) and over 0.2 < Itl < 0.5 GeV 2 ((d) and (e)). (a) and (d) show o, 
the full mass spectrum; (c) shows the helicity zero contribution o0; and the helicity one and 
two contributions are given by their natural (o+) and unnatural (a_) parity contributions in (b) 
and (e). (f) shows do/dt integrated over the region 1170 < mK~ < 1410 MeV as a function oft. 
The ~r-p ~ K°K°n (K+K-n) predictions are shown by full (dashed) curves. Contributions pro- 
ceeding via f0 (A2) production are shown by single- (double-) dotted curves. 

As an example,  consider the con t r ibu t ion  to [D0 [2. At m ~ mf0 the fo Breit-Wigner 
phase is ~ 50 ° ahead of  the A 2 resonance decay phase (see fig. 11) and the f0 pro- 
duc t ion  ampl i tude  is ~ 70 ° ahead of  the A 2 product ion  (see fig. 9) so that  the over- 

all relative phase will be ~ 120 ° (destructive) for (b) or (c) and ~ 120 ° + 180 ° (con- 
structive) for reactions (a) or (d). 

More comprehensive predict ions are shown in figs. 13, 14 and table 4 for differ, 
ent combina t ions  of  observables in 7rN -+ KP~N. Fig. 14 shows the various compo- 
nents  o f  do /d in  for It[ cuts o f  0 < I tl  < 0.5 and for 0.2 < I tl  < 0 . 5  GeV 2. The 
latter cut samples the region of  largest p roduct ion  phase difference in D 1_ so ex- 
hibi t ing larger interference effects in da_ /dm  and hence in do/dm (do+ldm is small 
and the helici ty zero p roduc t ion  phase difference is independent  of  t in our  model) .  
A general feature of  the predicted mass spectra of  figs. 13 and 14 is that  the maxima 
of bo th  7r-p -~ K - K + n  and zr p -+ KOK0n are shifted from the posi t ion of  the domi- 
nant  f0 (1270 MeV) towards  higher masses (to 1325 and 1300 MeV, respectively). 
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Table 4 
The predicted normalized moments of the KK angular distribution in 7r-p ~ KKn at 17.2 
GeV/c and m KK = 1310 MeV (< Y°o > = l/x/47r) 

307 

Moment K°K ° K+K - 

<Yo2> 0.132 0.140 

(Y~ > -0.010 -0.009 
~Y~> 0.089 0.118 
<y4 ) 0.081 0.082 
<y2) 0.062 0.051 

(Y~ > 0.032 0.030 
<Y~> 0.011 0.013 
<Y44) 0.002 0.001 

For n - p  -* K - K + n  (or equivalently n+n ~ KOK0p) the shift is more marked and a 
definite asymmetry around 1325 MeV is anticipated. 

Also shown in fig. 14 is d o / d t  (in the mass region 1.17 < m  < 1.41 GeV) for 
n - p  --, K + K - n  and rr-p ~ KOK0n. The interference effects are seen to be small. 
Another way to exhibit the data is to show the normalized moments ( y L ) ( e q .  (A.6)) 
for KK production. However, these are predicted to have very weak m dependence 
and small interference effects. This is understandable since in general each ( y L )  is a 
sum over many exchange components whose contributions tend to be diluted. In 
table 4 we give the predicted values of the ( y L )  at m = 1310 MeV, where the KK 
spectra are approximately maximal. Only the ( y 4 )  moments will be independent of 

S- and P-wave background uncertainties. 

To make maximum use of interference effects, care of these J < 2 contributions 
and of accurate relative normalization will be needed experimentally. Another source 

of uncertainty is the precise f0 ~ KK (and to a lesser extent A 2 -~ KK) branching 
ratio. The quoted [28] value of f0 ~ K~/ f0  __, all = 0.05 -+ 0.03 is based on data 

samples in which the effects of f0 _ A2 interference have had to be taken into ac- 
count in principle. Thus, since we have a reasonable model for the relative strength 
and phase of f0 and A 2 production in nN --, KK, N, we are in a position to re-evaluate 
the f0 __, KK branching ratio. As an example, fig. 13 shows data [29] on n - p  
KOK0n at 12 G e V / c ,  together with our (absolute) prediction* including f0 _ A2 
interference and using f0 ~ K~,/f0 __, all = 0.025. Taking account of the normaliza- 

tion error on the data, and the possible contribution of S- and P-wave KK; this 
yields a KK/all branching ratio 0.025 -+ 0.01. Our curves in fig. 14 are evaluated 
with this branching ratio which has the virtue of being closer to the theoretical 

* This contrasts with the experimental analysis [29] of the same data which added incoherent- 
ly fo and A2 and, estimating equal contributions of the two resonances, compared with the 
then existing fo production data in the nTr mode and claimed fo --, K~x/fo ~ nn ~ 0.05. 
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value from SU(3). Thus, ideal mixing in the tensor meson nonet gives equal f0KK 
and A2KK couplings and allowing for D-wave phase space ['fOK~ = 0.7 
['A2KK ~ 3.4 MeV, i.e. I ' ( f  0 ~ KK)/Y(f  ° ~ all) ~ 0.02. 

6. Conclusions 

(i) The simple exchange-model ideas of  exchange-degenerate, factorizing, SU(3) 
symmetric t-channel Regge poles, together with empirical cuts in over-all non-flip 
amplitudes, have proved a very useful guide to the data. Exchange-degeneracy 
breakings of  up to factors of  2 have been found necessary, in particular between p 
and A 2 exchanges in vector meson production. It is important to consider a prior i  

all allowed pole exchanges (i.e. B, A 1 , Z ...) and then argue why their contributions 
might be negligible (as for A 1 exchange in ~N ~ pN). 

(ii) The dual boost factors provide an economical description of  higher spin 
meson production. The predicted mass/spin dependence of the natural/unnatural 
pole couplings, meson vertex helicity couplings and production t dependences 
proved very satisfactory in the case of  p and f0 production. The dual vertex helicity 
couplings were also shown to describe well the dominantly Xco = 1 decay B ~ coTr. 

(iii) The empirically determined cut in p production has a remarkably steep t 
dependence, although this can be alleviated by modifying the 7r t/Try) ratio. For f0 
production the cut is relatively smaller at t = 0 and is less steep. No convincing theo- 
retical explanation exists, although one possible contributory factor was discussed. 

(iv) Improved data on the charge-exchange production of  60, A 2 and f0 over a 
range of  energies will allow many of  the above feature to be clarified. Together with 
polarization data, or data on the KK decay of  f0 _ A2 (predictions for which were 
presented), many more model-independent lines of  analysis become accessible. Our 
preliminary study of  tensor meson production can easily be extended to higher spin 
mesons - for instance the spin-3 states g and 60*(3-).  Thus the systematics of  the 
dependence of the production amplitudes on the external mass and spin can be 
established as soon as the relevant data becomes available. 

(v) Our preliminary analysis of  f0 _ A2 interference in 7rN -+ KKN (in which the 
important role of  the production amplitudes is emphasized) allows an estimate to be 
made of  the f0 ~ K~/ f0  ~ all branching ratio which we find to be 0.025 +- 0.010. 

We are grateful to Alan Martin and Penny Estabrooks for helpful discussions and 
communications. 

Appendix A. Normalization and spin 

Consider the process a + b ~ m + e, where m is a spin-J resonance of helicity X 
which decays with invariant mass m into two spinless particles c and d. In the rest 
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flame of m, the direction o fp  c is described by spherical polar angles 0 and 0 in a 
frame with Oy normal to the scattering plane and Oz either along Pa in the t-channel 
frame or along -Pe  in the s-channel frame. The helicity amplitude for a + b - c + d + e 
can be factorized into a production amplitude A J and a decay matrix element M J 

M J dJo(COS O)e ixo 
A ua ( s , t ,  m 2 , 0 , ( a ) = ~  AJXUa(s t , m  2) , (A.1) 

~tetSb X ge~'b" ' m2j _ m 2 - i m F T ( m  ) 

where 
87rm 

[MJI 2 =--~-- (2J + 1)mjPcd(m ) . 

We normalize A such that the differential cross section 

(A.2) 

do 1 

dtdm2d~2 (2703 

qcd 
- -  ~ tAuuaub (S, t, m 2, O, ~b)[ 2 , 

# 
(A.3) 

where an average over initial spin states and sum over final spin states is implied. 
Integrating over the decay angular distribution exhibited in eq. (A.1) 

do" ~ ,JXu 
= AUcUb(S, t, m 2 ) B J ( m ) l  2 

dtdm 2 u,x 
(A.4) 

where 
1 

[mjFcd(m)/Tr] ~ 
B J ( m )  - 

m 2 _ m 2 _ i m F T ( m  ) 

are the decay factors relevant. 
The generalization to the expectation value of the angular decay moments 

y L  (o, qb) gives 

(A.5) 

(y~4)=_ ~ ~ 2J+l , ~ (JJO0 ILO)(-1)  x' ( J J X - X ' r L M ) p J x  ' , 

with 

pjx,(m2) do 
dtdm 2 

(A.6) 

- 

Jk# a 
= ~ Re[A t%ub(S , t ,  m 2 ) B J ( m ) A  ( s , t ,  m 2 ) * B J ( m )  *] . 

# 
(A.7) 

For resonance production it is convenient to introduce production amplitudes 
averaged over the resonance mass spectrum and corrected for all decay modes. Thus 
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the natural definition of a production cross section is to integrate over the resonance 
peak: 

d o _  I~T m~ do 
dt P e l f  d m 2 - -  

d tdm 2 

l(m 2 , m 2) 

(2s a + 1)(2s b+ 1) 
~ Jk~ 

, [Aueub(S't'm2)12' (A.8) 

which introduces the average production amplitudes. The average I is defined so that 
it is unity for a narrow resonance. In general, it depends on the mass dependence of  
the production amplitudes A J and the decay factors B J: 

mh p_ 
I(m2,m 2) = - ~  / dm21BJ(m)l 2 ~ IAJ(m2)12/~ IAJ(m2j)[ 2 . (A.9) 

IS, k Is, k 
m ~  

Analogous averaged results hold for the moments  and density matrix elements of  
resonance production. For explicit expressions and an extension to a mixture of  spin 
states see ref. [23]. 

In the special case ofzr exchange at t =/22, however, the dependence of the pro- 
duction amplitude on m 2 is known and can be used to obtain the normalization of  
p and f0 production. Thus A J contains [6] an additional factor ofM J controlling 
the production of  resonance J by rr exchange. Thus 

mh mjl'cd(m2 ) qjm Pcd(m 2) l- 'T(mj) 1 

£J dm21m2_  m 2 _ imPT(m2)12 mjq Fcxt(m 2) 
(A.10) 

rr Pcd(mj) m~ 

This, combined with the Chew-Low formula [6], enables the production cross sec- 
tion at t -+/~2 to be normalized 

(t - /22)2  do.] _ 2~r g2 
- t '  -~  t=is2 m2p2 4rr CI(2J+ 1)mjFcd(mj)I"" (A.11) 

The right-hand side at PL = 17.2 GeV/c, with g2/4rr = 14.4, taking I~r = 1, has a 
value (6.55) 2/2b for p production (I = 1 ; c I = 1 ; P(mj)  = 0.143) and a value of(9 .2)  2 
for f0 production (I = 0; c I = ~; PTrTr(mj) = 0.81 × 0.182). These values are used for 
normalizing our production amplitudes by equating them to g2e2b~is~ (see table 1). 
Representative values o f I ~ ( m  2, m 2 )  calculated from the err phase shifts [6] are 

1°(0.490, 0.689) = 0 .495 ,  In0(0.078, 1.562), = 1.028. 

Thus about -+31" in m is needed to have I ° ~ 1. For the f0, with -+3F mass range 
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I [ = 0.96. Thus our normalization of the p and f production amplitudes corresponds 

in practice to taking a mass range of -+3F. For the co, which is very narrow, our pre- 
scription depends less on the production amplitude and is equivalent to taking the 
whole signal - to which -+3P is a good approximation. 

Appendix B. Decay amplitudes for f0 and A 2 

To evaluate the resonance decay factors B(m) (eq. (A.5) of Appendix A) we need 

the dependence of the total width 1" T and partial width Pcd on subenergy m. For a 
D-wave resonance it is customary to use a centrifugal barrier factor 

(qqR) 5 D2(qRR) 
r(m) : F(mR) D2(qR) , 

where D2(x ) = 9 + 3x 2 + x 4 , q is the decay momentum into the relevant channel, 
and R is a constant representing the radius of interaction. 

For the f0 we take [6] (in GeV units): mf = 1.27, mass dependence of F y from 
Py(mf) = 0.182, R = 3.5 with q as nTr decay momentum;  mass dependence of FKK 

from PK~,(mf)/PT = 0.025 (see text), R = 3.5 with q as KK decay momentum. 
For the A 2 we take [30] mA~ = 1.324; mass dependence of PT from I"T(mA2) = 

= 0.104, R = 3.5 with q as a 7rp decay momentum;  mass dependence of FKg from 

FK~(mA2)/F y = 0.06 [31 ], R = 3.5 with q as Kg, decay momentum, 
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Abstract: Dual structure of the ~rTr scattering amplitude has been investigated in terms of the 
finite energy sum rule using recent phase-shift data. The amplitude shows properties quite 
consistent with the simple dual model in the framework of the two component theory of 
duality. 

Extensive study of dipion peripheral production has given information on 7rTr 
scattering in the low-energy region and has enabled us to investigate a relation be- 
tween direct-channel resonances and crossed-channel Regge exchange, called duality. 

In this paper we present an analysis of nn scattering by constructing the amplitude 
in the Regge region in terms of finite energy sum rules using recent phase-shift data 

[1-31.  
We must include two resonance towers with different signatures in the direct 

channel to study the relation between trajectories with different signatures in the 
crossed channel. For the input of our analysis, we choose the partial-wave solution 
of the Wisconsin-Toronto group [2] (from X/s = 0.60 to 1.48 GeV), which covers 
the/9- and f-meson regionst. 

A set of sum rules with a continuous moment  is written in terms of the integral 
of a crossing-odd amplitude: 

S(t, e) = dv Im [(p2 _ i)2) -(e + 2)/2 e iTr(e + 2)/2 7(/,', t)] , (1) 

v 0 

l" The solution of ref. [2] seems to have two flaws at a glance [3, 4], i.e., one is the absence of 
the S~'(980) and the other is the early onset of inelasticity. The contribution of S*(980) to 
the integral of the FESR, however, is negligible because of its small elastic width, and the 
early onset of inelasticity may not have a serious effect after integration. On the other hand 
we do not take the LBL solution [3], because of its large f-wave contribution which is incon- 
sistent with recent experiment [4]. 
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where v = ~ (s - u). For I t = 0 and 2, we make T crossing odd, multiplying the origi- 
nal amplitudes by v. We evaluate the integral up to x/s = 1.48 GeV over the region 
0 ~< - t ~< 2.4 (GeV/c) 2 with moments - 4  ~< e ~< - 1 t .  Since the finite energy sum rules 
are known to be well saturated by low-lying resonances provided the cut-off is chosen 
midway between two adjacent resonances, [5, 6] our cut-off at x/s = 1.48 GeV, 
which lies midway between f and g mesons, is appropriate to test the duality. 

I t = 1. The integral (1), for each moment e, exhibits the phase of  the amplitude 
given by the effective trajectory ap(t) = 0.5 + 1.1 t. In fig. 1 we present the t.de- 
pendences of  both the imaginary and real parts of  the scattering amplitude in a 
Regge region, which are given by (a o + 1)S(t, - 2 )  and (~p + 2)S(t,  - 3 ) / x / v  2 - v  2, 

respectively, assuming T ~- u ~p. Both imaginary and real parts exhibit the behaviour 
characteristic of  # Regge pole exchange with the Getl-Mann mechanism [7]: the 
imaginary part has single zeros at t-~ -0 .4 ,  - 1 . 4  and - 2 . 3  (GeV/c) 2, while the 
real part has double zeros at t ~ - 0 . 4  and - 2 . 3  (GeV/c) 2 and has a maximum at 
t -~ - 1 . 5  (GeV/c) 2. 

In order to test the resonance dominance o f  the imaginary part of  the non-dif- 
fractive amplitude, which'is one of  the requisites for the duality, we also show in 
fig. 1 the imaginary part of  the amplitude calculated from the integral saturated by 
0, f and e'(1260) (second daughter of  f) resonancestt .  The figure shows that the 19 
Regge pole exchange amplitude is built of  the sum of  19, f and e' in the direct 
channel. We have made the same analysis including two more resonances 19'(1590) 
and g [8] in addition to 19, f and  e' and choosing the cut-off at 1.81 GeV and found 
single zeros at t :z -0 .4 ,  - 1 . 4  and -2 .1  (GeV/c) 2 in agreement with the results 
above. This indicates that the structure of  the imaginary part of  the amplitude re- 
mains unchanged as the cut-off is taken higher. 

It should be noted in particular that the amplitude near the first zero is described 
by the Regge pole exchange in contrast to the helicity non-flip amplitude in meson- 
baryon scattering, where the imaginary part has a zero at t -~ - 0 . 2  (GeV/c) 2. The 
prediction based on a low-energy 7rTr model [9], which gives a zero near t = -0 .2 ,  
does not agree with the FESR analysis, unless the partial waves higher than the 
leading resonances contribute unexpectedly. If  this feature of  the 7rlr scattering am- 
plitude persists at high energy, a considerable contribution from lower partial 
waves is required and the smaller radius of  the peripheral lrrr interaction (R ~ 0.8 
fm) which is consistent with the position of  the first zero at - t  -~ 0.4 (GeV/c) 2 
would not be sufficient to assure the observed behaviour, particularly beyond the 
first zero. 

t For the low-energy region (x/s < 0.6 GeV) where phase-shift data are lacking, we extrapolated 
the partial-wave amplitudes consistently with the current algebra requirements. Our results do 
not depend on the details of the extrapolation. 

t t  The resonance parameters are determined by a fitting procedure to the partial-wave ampli- 
tudes of ref. [2], each amplitude being assumed as a sum of a Breit-Wigner form and a con- 
stant background term. The parameters are: mp= 0.782, Fp = 0.137,xo = 0.93;mf = 1.261, 
l?f = 0.183, xf = 0.78 ; m e, = 1.316, I ' ,  = 0.267, x e, = 0.73 (in GeV units). A change of the 
parametrization, especially of e', has little influence on the results. 
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Fig. 1. t-dependences of  the imaginary and real parts o f  the I t = 1 scattering amplitude in the 
Regge region (solid curve), given by 

2 2 2 2 
x/v N -  v 0 T(VN, t) = i(c~p + 1)S(t,  - 2 )  + (ix O + 2)S(t ,  - 3 ) / x / u  N -  VO , 

where v N stands for the cut-off  o f  the integral. The errors shown are those calculated from the 
data of  ref. [2]. The dashed curve represents the imaginary part o f  the amplitude calculated by 
resonance saturation. (The amplitudes are in units o f  GeV.) 
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Fig. 2. p Regge-pole parameters, ~p(t) (a) and 13p(t) (b), determined in a t - independent  manner 
(circles) as well as a t -dependent  manner for 0 < - t  < 1 (GeV/c) 2 (solid curve). The errors for 
ap(t)  are only typical. (#p(t) is in units of  GeV.) 
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The remarkable feature also seen in fig. 1 is the t-channel Regge pole behaviour 
which persists in the large Itl region as far as t -~ - 2 . 4  (GeV/c) 2. Although we are 
in the region of  the third double spectral function in the integration for large I tl, 
the sum rule is expected to be written safely because of  the absence of  a dual (s, u) 
term in the I t = t combination, (s, t) - (u, t). In addition to this, the absence of an 
(s, u) term implies that the amplitude is described in terms of Regge-pole ex- 
change in the t-channel even in the backward direction, so that, as we observe in 
fig. 1, the imaginary part of  the amplitude at fixed u cancels when averaged over an 
energy interval As ~ 2 (GeV) 2 , while the real part gives a positive value in agreement 
with the p-f exchange degeneracy in the u- as well as s-channels. 

The Regge-pole parameters, ap(t) and ~p(t), determined in a t-independent 
manner are shown in fig. 2 t .  They are consistent with roughly straight trajec- 

t tory with ctp(0) -~ 0.5 and Up ~- 1 (GeV/c) -2  and the residue function ~p(t) 
1/P[ap(t)]. We have estimated ~p(m2), which is related to the p-width in the 
t-channel, in terms of  a t-dependent analysis assuming a linear trajectory and a 
quadratic parametrization in t for ~p(t) in the forward region 0 <~ I tl ~< 1 
(GeV/c) 2 . This analysis gives ep(t) = 0.52 + 1.08 t and rp  -~ o. 15 GeV, consistent 
with the p meson width in the s-channel Fp -~ 0.13 GeV*. 

I t = 0. The two component  theory of  duality [ 10] assumes that the imaginary 
part of  the amplitude in the forward region is given by the sum of f Regge and 
pomeron exchanges which are dual to s-channel resonances and the non-resonating 
background part, respectively. This assumption has been ascertained in the case of  
meson-baryon scattering by separating the ordinary Regge amplitude in terms of  
the resonance approximation in the s-channel [11-13] .  The saturation of  the p-ex- 
change amplitude by the s-channel resonances allows us to expect they also saturate 
f-exchange in the I t = 0 amplitude. 

The integral corresponding to the imaginary part of  the I t = 0 combination of  the 
resonant amplitude is presented in fig. 3(a) in the forward region up to t = - 1 . 0  
(GeV/c) 2, together with that o f  the full amplitude. The resonant part has the quali- 
tative features of  single Regge-pote exchange with the Gell-Mann mechanism like 
the p-exchange, and is quite consistent with the p-f  exchange degeneracy. To make 
it clear the imaginary part of  the p exchange contribution to the I t = 1 amplitude 
multiplied by -32 is added in the same figure. The slight difference between the two 
amplitudes is due to our cut-off o f  the integral and will become smaller with alter- 
nating signs as the cut-off  is taken higher. 

On the other hand the non-resonating background part shows a diffraction-like 
t-dependence as is seen in fig. 3(b). The magnitude of  the forward peak corresponds 
to the asymptotic  total cross section a~,~ -~ 28 rob. Although this value seems a bit 

r e x p  larger ~e~r ~ - 18 mb [14]) it should not be taken too seriously, since it depends on 
the choice of  a partial-wave solution and the separation of  the background part. 

tot tot 16n #p(0) s c~p(0)-l. t The residue f3p(t) is normalized as %r+~r- - %r+,r+ = 
* See third footnote of this paper. 
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Fig. 3. (a) the integral S(t ,  -2 )  corresponding to the imaginary part of the I t = 0 amplitude 
(solid curve) and the resonance saturation for the integral (dashed curve) as a function of t. The 
p exchange contribution to the I t = 1 amplitude multiplied by ~ is also shown (dotted curve). 
(b) the non-resonating background part which is obtained by subtracting the resonance contri- 
bution from the integral corresponding to the full amplitude. 
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Fig. 4. (a) the integral S(t ,  -2 )  corresponding to the imaginary part of the I t = 2 amplitude 
(solid curve) as compared with the imaginary part of the I t = 0 resonant amplitude (dashed 
curve). (b) the effective Regge-pole trajectory for the I t = 2 amplitude determined in a t-inde- 
pendent manner for 0 < - t  < 1 (GeV/c) 2. 
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These results are in good agreement with the conjecture of  the two component 
theory o f  duality in that the resonant and background parts are dual to ordinary 
Regge and pomeron exchanges, respectively. 

We now refer to the real part, which is sensitive to the ill-determined phase shift 
of  the I s = 2 d-wave ~ 2 (due to the crossing matrix and the factor q v  ~ v 2 in the in- 
tegrand). We have found that the integral corresponding to the real part of  t h e I  t = 0 
amplitude has a zero at t -~ - 0 . 6  (GeV/c) 2 contrary to the expected behaviour of  the 
sum of the pomeron and f exchanges. This discrepancy originates from the large ex- 
otic phase 6 2 o f  our input [2]t .  

I t = 2. The integral corresponding to the imaginary part of  the I t = 2 amplitude 
is about half of  that of  the I t = 0 resonant amplitude at t = 0 (fig. 4a), although no 
Regge pole is exchanged in the I t = 2 channel. As for this superconvergence-type in- 
tegral, we are confronted with a disastrous cut-off problem [15], i.e., the magnitude 
of  the s-channel resonances grows as v %  (t), so that cancellation between the contri- 
butions from resonances with different signatures is not expected even if the ex- 
change degeneracy holds exactly (a simple estimation of  the integral with exact ex- 
change degeneracy gives'54% of the integral for the I t = 0 resonant part). The ex- 
oticity of  the t-channel, however, is supported by two observations: (i) the integral 
has a structureless t-dependence, (ii) effective one-pole analysis gives Oteff(t ) < 0 for 
all t (fig. 4b). 

We have investigated the properties of  the amplitude for ~rn scattering as model- 
independently as possible using recent partial-wave analyses. The results presented 
above are strongly suggestive of  the dual structure which is abstracted from the 
simple B 4 model in the framework of  the two-component theory. 

One of  the authors (Y.O.) is thankful to the Sakkokai Foundation for financial 
support. 
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Abstract: The 17 GeV/c 7r-p --, p°n production amplitudes are decomposed into 7r, A2 and 
non-evasive exchange contributions. Independent support for this description comes from 
the observed p-to interference effects and from the energy dependence of po production 
data. 

The reaction rr-p -~ pOn is well-known historically as a process in which lr ex- 
change can be studied. However, it has also been noted that simple one-pion ex- 
change does not provide a complete description of  the production mechanisms 
[1,2] .  Here we investigate the non zr exchange contributions and present a simple 
phenomenological model which describes the helicity structure and t dependence 
of  the 17.2 GeV/c p0 production data [3]. Examination of  the energy dependence 
and ofp-w interference effects provides support for our description. 

The p production ** amplitude combinations P0, P+ and P_  can be extracted 
[4, 5] from zr-p ~ zr-Tr+n cross-section and density matrix data. P0 describes helicity 
zero dipion production and P+ ( P )  describe helicity 1 production by natural (un- 
natural) parity exchange to leading order in energy. Neglect of  A 1 quantum number 
exchange ensures [5] that P0 and P_  are single amplitudes and their relative phase, 
~0, can also be determined. P+ is an incoherent sum of  amplitudes with and without 
helicity flip at the nucleon vertex (of  which the former is expected to dominate). 

The P-wave amplitudes t obtained from the high statistics 17.2 GeV/c data [3] 
are shown in fig. 1 for the t channel (Gottfried-Jackson) frame. For our present 
purposes, the s-channel decomposition could equally well be used, but the t channel 
allows a somewhat clearer separation o f  the modifications to 7r exchange. 

Supported by the National Research Council of Canada. 
~ On leave of absence from the University of Durham, Durham. 

* Present address: University of Durham, Durham. 
** That is the P-wave ~r-rr + production amplitudes in the p mass region. 
t We consider only the solution with P0 and P_ essentially phase coherent which was shown 

[6] to be the physical solution for - t  < 0.2 GeV 2 . 
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p PROOUCTION AMPLITUDES AT 17 GeV/c 
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Fig. 1. The p production amplitudes in the t-channel frame at 17.2 GeV/c. The points are the 
results of an amplitude analysis of the CERN-Munich 7r-p ~ n-n+n data for 700 < Mrrzr < 
850 MeV. The curves are the results of the fit to the amplitudes in the interval 0.005 < - t  < 
0.5 GeV 2 that is described in the text. The values of the parameters are gc/g~r = -1.21, cor- 
responding to a cut strength of 0.93 of that in the Williams model [7], gA/g~ = 8.2, b~r = 
0.6 GeV ÷2, b C = 0.8 GeV -2, b A = 2.5 GeV -2 and c~  - ~ = 0.43 GeV-2~(X~ = 0.7 per degree 
of freedom). 

E lementa ry  one-pion exchange only couples to P0 in the t -channel  frame.  The 

non-zero  values of/'_+, which  moreover  do no t  vanish in the forward di rect ion,  thus 

imply  an addi t ional  con t r ibu t ion  which is no t  (evasive) pole exchange.  Such a cut  

effect  is expec ted  [7, 2] to be most  impor tan t  in the s-channel net  hel ic i ty  non-fl ip 

ampli tude H I _ .  The cut,  C, then contr ibutes  equal ly  to P+ and P _  in the s-channel,  
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and on crossing to the t-channel contributes to P+, P_, PO in the ratio 1 : cos X : sin X, 
where X is the s-t crossing angle (sin X > 0). The inclusion of  C allows an adequate 
description of  P _ ,  but  the observed ratio of  Ie+[ to IP_ I as a function of  t necessi- 
tates the introduct ion of  a natural pari ty exchange contribution (A 2 exchange) 
which interferes destructively with C in P+. This leads us to the parametrization 

P o = n + C s i n x ,  P _ = C c o s x ,  P+=A2  + C ,  (1) 

where the t dependence is parametrized as 

n =gn e e , 
I d 2 - t  

1 . 

bet e - ~  tna c 
C= gce  , (2) 

1 . 

bAt e -  ~ tlr~A 
A 2 = - - t g A e  

• t . . 

with a i = a b + air determining the phase of  the i th  contribution.  
The phase difference between 7r and C is controlled by the relative phase, ~o, of  

P0 and P _ ,  which is consistent with ~o = 180 ° for all - t  less than 0.5 GeV 2. P0 and 
P_ determine the zr and C contributions,  and then, given the phase difference * 
a A - a c ,  IP+I determines the A 2 exchange contribution.  We take a¢ = a n and, at 
t = O, a A - a C = 0.5. Allowing a linear dependence on t of  the A2-C phase differ- 
ence, we obtain the overall fit  ** in the t region - 0 . 0 0 5  to - 0 . 5  GeV 2 shown in 
fig. 1. 

The simple parametrizat ion of  eqs. (1) and (2) is an excellent description of  the 
17.2 GeV/c data out to - t  = 0.5 GeV 2. The description of  P+ is also reasonable in 
the region beyond - 0 . 5  GeV 2, where this amplitude dominates. Two possible con- 
tributions which have been neglected could easily be incorporated without  changing 
the essential features. First,  from processes such as KN ~ KN, nN ~ r/N, and from 
the non-zero polarization in 7P ~ n+n, there is some evidence for a small A 2 helicity 
non-flip coupling at the nucleon vertex. Such a coupling will be important  for polari- 
zation predictions in nN -+ pN, but  enters the unpolarized observables only as a 
small correction to the t dependence o f A  2 and a small reduction of  coherence be- 
tween C and A 2 in P+" Secondly, a reggeized zr exchange can have a X t --- +- 1 coupling 
(vanishing at t = / l  2 of  course) to P .  This coupling is present in dual Born models [8] 
and is such as to fill in the crossing matrix zero (cos X = 0 at - t  ~ 0.6 GeV 2) i n P _  
in the t-channel frame (or equivalently in P0 in the s-channel frame). Fig. 1 indeed 
indicates the need for such a contr ibut ion to P_ at large t. 

* The data impose bounds to this phase difference. At - t  ~ 0.05, la A - aC I < 0.6 decreasing 
to la A - c~cl<~ 0.2 at - t  ~ 0.5 GeV 2. 

** As IP+I 2 has a quadratic dependence onA2, a second solution exists. This is found to be un- 
physical, having an A 2 contribution whose phase, relative to C, varies extremely rapidly 
with t, and whose magnitude shows an anomalously rapid t dependence. 
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Fig. 2. The effective trajectories, calculated using s-channel amplitude components obtained by 
analysing ~r-p ~ ~r-rr+n data in the energy range 4-17 GeV/c. 

Having established a parametrization for the phase and t dependence of  the 7r, C 
and A 2 contributions for - t  < 0.5 GeV 2, we look at the energy dependence that 
would arise from the phase-energy relationship. Fig. 2 shows the effective trajectories, 

aeff(t), for P0, P+ and P_  (in the s-channel) obtained * by analyzing r r -p  ~ 7r-n+n 
data, refs. [3, 10 -13 ] ,  in the energy range 4 to 17 GeV/c. In the model  o f e q .  (1), 
the s-channel P0 is pure Ir exchange and aTr -- 0.5 ( t - /~ 2) is a reasonable compromise 
trajectory. Qualitatively, the structure of  aef f for P÷ can be easily understood with 
our description. C is the dominant  contribution at small t (o~7 ~ an)  and A 2 dom- 
intates at t ~ - 0 . 5 ,  while there is a cancellation at intermediate t values (t ~ - 0 . 2 5 )  
which leads to an aef f above the A 2 trajectory.  However, although the t behaviour 
is correct,  the phase-energy predict ion is approximately 0.2 lower than Ctef f obtained 
from the data. 

At 17.2 GeV/c, 0-6o interference effects have been shown [14] to be largest in 
P+ in the interval 0.1 < - t  < 0.4 GeV 2 and we shall concentrate on this amplitude. 
Fig. 3 shows a breakdown of  P+ into its C and A 2 components ,  as determined above, 

* The method used is described in ref. [9], except that here we use the s-channel observable 
(Poo+ ½Pss) do/dt in the place of IPol 2 . This is an update of that calculation and includes 
high statistics n - p  ~ ~r-Tr+n data at 6 GeV/c [ 13] as well as the high statistics 17 GeV/c data. 
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for three relevant t intervals. The phase of P+ relative to P_ can thus be ob÷ained. 
For n - p  ~ con, p quantum number exchange contributes to P+. Since B quantum 
number exchange in gN -+ wN is smaller than zr exchange in ~rN ~ pN, the B cut 
should be small compared to p exchange *. Unfortunately, there are no data on 
IP+I for lrN ~ con at or near 17 GeV/c. Thus, the modulus, as well as the phase, 
must be estimated before a p-co interference pattern can be predicted. The simplest 
model is to take exchange degenerate p and A 2 contributions: p = iA 2 tan ½ ZraA(t ). 
This then ensures, via SU(3), a real KN -+ K*N amplitude in agreement with duality 
for an exotic direct channel process. Constructing P+ for co production in this way 
then yields the p-co modulating factors shown in fig. 3. Conversely, the relative 
moduli and phases of the p and co production amplitudes P+ derived from fitting 
the experimental data at 17.2 GeV/c [14], yield the P+ amplitudes for co production 
that are shown by crosses in fig. 3. These estimates are in reasonable accord with 
the p-A 2 exchange degeneracy prescription. In particular the change of phase of P+ 
with t, required by the observed p-co effects, is well reproduced by the admixture 
of C and A 2 contributions to P+ for 7r-p -+ p°n. 

Further confirmation comes from the observed ratio [15] of [P+[ in K - p  -~ K*0n 
and K÷n ~ K*0p. P+ for K+n ~ K*0p (C+A2+P exchange) is suppressed since the 
resultant ofA 2+p, which is predominantly real, cancels with the real C contribu- 
tion. On the other hand, for K - p  ~ K*0n ( C + A 2 - P  exchange), the resultant of 
A 2 - P  is approximately imaginary and adds incoherently to C. 

The exchange degeneracy of p and A 2 leads to a zero of the p contribution at 
a o = 0 which is not observed in P+ obtained from the available g+n ~ cop data at 
6 - 7  GeV/c [16, 17]. Thus, some modification at larger t or at lower energy toP+ 
in co production will be necessary.'Insight into this effect should come from a study 
of the P-co effects in the 4 - 6  GeV/c Argonne [13] zr-p -* zr-n+n (and n+n -+ 7r-n+p) 
data. In fig. 3, we predict the p-co modulating factor for P+ at 4 GeV/c, using the 
17 GeV/c amplitude components, o-A 2 exchange degeneracy and the phase-energy 
relation. The observed effect in P+, for 0.08 < - t  < 0.2, in the preliminary data [ 13] 
at 4 GeV/c indicates a somewhat larger relative p-co production phase (240 -+ 20 °) 
than that predicted by the model (~  210°). 

In summary, we have presented a simple picture for the main features of the t 
and s dependence of r r -p  ~ p0n data and p-co interference patterns. For rr-p -+ p0n, 
the dominant contributions are n exchange (unnatural parity exchange coupling to 
t-channel helicity zero P mesons); a cut C (over-all s-channel helicity non-flip which 
thus contributes to unnatural and natural parity exchange), and an A 2 contribution 
in natural parity exchange which interferes destructively with the cut contribution. 
The natural parity exchange amplitude for lrN ~ coN, as seen through p-co inter- 
ference, is consistent with a p contribution exchange degenerate to the A 2 contribu- 
tion in 7rN -+ pN. 

* This is consistent with the small O-to interference effects observed in P_ (cf., ref. [ 14]). 
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Abstract: We give a comprehensive description of our scheme for applying the Roy equations to 
nlr phenomenology. The method is applied to recent high statistics ~r~r experiments. The com- 
plete set of amplitudes consistent with these experiments and with the theoretical constraints 
of analyticity, crossing and unitarity are presented. We consider the implications of these 
results and discuss future experiments which could remove the final ambiguities in the low- 
energy ~r~r amplitude. 

1. Introduction 

Our ambition, in performing this phenomenological analysis of 7rn scattering, is 
to describe the low-energy mr experimental situation in a language as simple and as 
model-independent as possible, sticking to properties derived from fundamental  
principles. Within the context of present experimental information, the outcome 
of our work is to point out what is known about rrrr scattering and what remains 

to be measured in order to have complete information, i.e. what are the "useful" 

measurements. Our most important results have already been given in refs. [1 -4] ,  

and, in this paper, we give a complete account of the method and techniques. Of 
course, our program is such that we can readily incorporate new measurements 
as soon as they are available. We must emphasize that, at this stage, we do not 
have any other theoretical ambition than analyzing the data. We believe that it is 
only once this phenomenological description is done thoroughly that one can at- 
tempt to understand theoretically the dynamics of the low-energy rrTr system, or 
to test various dynamical assumptions, since there is a considerable dispersion in 
the experimental results at present. 

We proceed in two steps. First, we elicit the classes of 7rrr amplitudes consistent 

* Postal address: Laboratoire de Physique Th~orique et Hautes Energies, Universit~ Paris VI - 
Tour 16 - ler ~tage - 2, Place Jussieu, 75221 Paris CEDEX 05. 

** On leave from Dept. of Natural Philosophy, Glasgow University, Glasgow G12 8QQ. 
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with crossing, analyticity and unitarity requirements. Then we find the subclass 
which agrees with experimental results. Our basic starting point consists in the 
rigorous equations derived by Roy [5] on the basis of  fixed momentum transfer 
dispersion relations and crossing symmetry.  In sect. 2 we recall these equations 
and explain how we use them. In spirit, our work may be compared to what has 
been done in the past decade on lrN scattering [6], the difference being that the 
experimental rrN information is much more accurate and abundant, while theore- 
tical constraints on zrlr -+ ~zr, which is a closed system under crossing, are more 
stringent. Roy's  equations express the crossing property directly on physical partial- 
wave amplitudes and it was advocated by Basdevant, le Guillou and Navelet [7] 
that they should be used for such an analysis. Besides us, several groups [8 -10]  
have at tempted this and the results may be considered qualitatively similar although 
a particular parametrization in the case of  Bonnier and Gauron [8] and a specific 
interpretation of the data in the case of  Pennington and Protopopescu [10] have 
led these authors to conclusions which are too restrictive in our opinion, although 
correct within their particular assumptions. 

An important byproduct  of  our work is of  a theoretical nature. In fact, we have 
gained considerable insight into various previous theoretical approaches to ~rzr scat- 
tering and their results [ 11 ]. The Chew-Mandelstam equations, which are well- 
defined approximations to Roy's  equations [7], must be reinterpreted as relations 
approximately satisfied by the amplitude. In some recent model calculations [12] 
which used the unphysical region constraints it was claimed that the presence of 
the p-meson in the I = l = 1 amplitude leads to more or less unique s-waves; by being 
able to produce explicit counterexamples, we have shown these conclusions to be 
much too restrictive. Recently Piguet and Wanders [13] have also shown this using 
the unphysical region constraints, therefore it is not necessary to further analyze 
this point: the unphysical region constraints may be just as useful as the physical 
ones but it is more difficult to use them safely when continuing to the physical 
region (e.g. the/)-mass). Our most important observation concerns the number of  
parameters which are necessary in order to specify the low-energy zrrr amplitude. 
In fact, we have found essentially the same number of  degrees of  freedom as in the 
Born term of a Lagrangian model. For instance, the interplay of crossing and uni- 
tarity is not strong enough to determine the lrTr amplitude uniquely once the exis- 
tence of the O meson is fixed: one can impose the presence of  an arbitrary I = 0 
s-wave resonance etc . . . . .  One of  the ambiguities is reminiscent of  the Castillejo- 
Dalitz-Dyson ambiguity. Mathematically, the Roy equations bear much resem- 
blance with the approach initiated by Atkinson [14] in recent years within the 
Mandelstam representation, and it may be possible that they contain the CDD am- 
biguity noticed by Atkinson and Warnock [15 ]. This observation is in particular 
relevant to the question of constructing ¢rrr amplitudes constrained by the low-energy 
current algebra conditions [ 16, 17]: in fact, the existence of  the O meson and of  an 
isoscalar s-wave resonance cannot be established without specifying further the 
dynamics, for instance by requiring the absence of CDD poles [17] (if this is possible) 
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or by referring to a specific Lagrangian [18] (this has been noticed in a different 
context by Lehman [ 19]). These theoretical results are mentioned in sect. 3. The 
conclusion that can be drawn is that it is absolutely necessary to supplement cros- 
sing and unitarity with very precise dynamical properties - and not just a few low 
energy parameters - in order to specify the zrTr amplitude. We have not been able 
to use criteria such as asymptotic properties, duality or current algebra conditions 
in a secure way to discriminate among our solutions; we fee! that new theoretical 
tools or definitions are necessary in order to do so. 

Sect. 4 contains the results of  our phenomenological analysis, concentrating on 
the energy region from threshold to 1.1 GeV. This analysis uses, besides the p pa- 
rameters, various sets of  data concerning the I = l = 0 phase shift 60 in the region 
500 MeV ~<M~ r ~< 1100 MeV coming from pion production experiments. We then ex- 
amine a posteriori the implications of  other measurements such as 60 in the low-energy 
region - e.g. from Ke4 experiments - and the I = 2 s-wave phase ~02. The first im- 
portant observation is that there is at present no compelling argument to fix the 
s-wave I = 0 scattering length a 0 better than within the limits -0 .05  ~< a 0 ~< 0.7 m~ -1. 
In particular we cannot confirm that Weinberg's predictions (a 0 ~ 0 .15-0 .19)  are 
established. Secondly, as an effect of  the ambiguities, one cannot discriminate be- 
tween the phases 60 of  three different groups [20-22]  which, in the region 
500 MeV ~< M.n % 900 MeV are similar in behaviour, but are roughly equally spaced 
from one another by 5 ° to 10 °. However, once a 0 and a particular experimental set 
of  60 and inelasticities 7? 0 up to 100 MeV have been selected, then relatively crude 
information about the high energy behaviour is Sufficient to determine the 7fir-am- 
plitudes below 1 GeV, within small uncertainties. Hence we are able (a) to discuss 
the implcations o f  a given set of  experimental results and to compare it with other 
sets, and (b) to indicate how further experiments (and what experiments) can re- 
solve these final ambiguities. 

2. Theoretical framework 

2.1. Roy 's  equations 

The technique for obtaining physical partial wave equations is quite old [23]. 
The 7rrr equations have been written by Roy [5], and further analyzed by Basdevant, 
Le Guillou and Navelet [7] (BGN). We shall only mention the basic features of  inte- 
rest for the present work. For simplicity we consider the 7r0zr 0 amplitude FOO(s,t,u) 
and denote by AOO(s,t) its s-channel absorptive part (our notations and conventions 
are given in appendix A). The t-dependent subtraction function o f  fixed-t dispersion 
relations can be expressed in terms of  the forward amplitude [5, 7], and we write 
the dispersion relation as (we use pion mass units mn = 1) 
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FOO(s,t,u)=aOO +t(t-4 ) ; ds' [ 1 AOO(s,,O ) 1 + 1 
7r 4 s'(s'--4) s'-t s'+t--4 

+1 f ds, AOO(s,,t)[ 1 + 1__ 1 1 1 , (2.1) 
7r 4 s'-s s'-u s' s'+t-4 

where a 00 is the s-wave scattering length, and where the absorptive part can be ex- 
panded in partial waves 

AOO(s',t) = ~ (2,+ 1)ImfOO(s')Pl (1 +2 -~ t  1 (2.2) 
l=0 s ' -41 

in the intersection of the large Lehmann-Martin ellipses *, i.e. 

4 ~> t ~> - 2 8 .  (2.3) 

After projecting FOO(s,t,u) onto partial waves, using the t-u symmetry in the direct 
channel (Bose statistics), 

1 
fOO(s) =1 f FOO(s't'u)Pt(z) dz 

- 1  

FOO(s,t,u)PI l+g--~ a t ,  (2.4) 

0 ½(4-s) 

and using eqs. (2.1) and (2.2), one obtains a set of relations for partial-wave ampli- 
tudes 

00 ? , r , 
f l  (s)=aO0'SlO + ~ '  (21'+I) , I  ds K I (s,s) ImfOO(s ') , (2.5) 

I '  4 

where the kernels can easily be deduced from the above equations. The relations 
(2.5) are well defined, i.e. the summation over l' converges, provided s is in the range 

- 4  ~< s ~< 60, (2.6) 

(this range may be extended considerably, both rigorously [25] and by phenomeno- 
logical arguments [7]). Taking isospin into account is only an algebraic complica- 
tion, we refer the reader e.g. to BGN [7]. 

These equations are rigorously derived from axiomatic field theory, they are 
necessary conditions for crossing to hold since they originate from the s-u symmetric 
eq. (2.1), but they are not sufficient and must be supplemented [5, 7] by another 
set of relations expressing the t-u symmetry of the amplitude defined by eq. (2.1) 

1 

f l  F00 (s, t,u) P21+ 1 (z) dz = 0 .  (2.7) 

* See for instance ref. [24]. 
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However, it can be seen [5, 7] that these supplementary conditions involve only 
higher partial waves l' >/2, and do not constrain the s-wave (more generally, the s- 
and p-waves in the full isospin treatment). Therefore, for  l '= 0 (and l '= 1), eq. (2.5) 
is a complete expression of the crossing symmetry that the total amplitude enjoys; 
in particular, Martin's [26] and Roskies' [27] relations for s- and p-waves may be 
deduced from it. 

Roy has furthermore argued that if the absorptive parts Imfl(s ) are known in 
the inelastic region s ~> 16, the elastic unitarity relation 

Im fl(s) = p(s) [(Re fl(s)) 2 + (Im fl(S)) 2 ] (2.8) 

with Re fl(S) as defined by eq. (2.5) (which is an identity for Imfl)  provides a sys- 
tem of non-linear singular integral equations defining Imf  l, and hence the ampli- 
tude, in the elastic region. 

2.2. Basic properties of the equations 

In the realistic case with charged pions, the equations have the form 

1 - ~ 0  - 2 .  s -4  
fl!s)= 0 6lO +g[Zao--3ao)---4- 6~11 

a2 -¥~10 

2 1 f 
+ ~ ~ KI/'(s,s') Im f/,'(~') ds' + 4 ( s ) ,  (2.9) 

I'=0 r=o 4 

where a 0 and a 2 are the s-wave scattering lengths, and where ~b/(s)is a well defined 
sum of higher partial-wave contributions (l' i> 2) 

2 
~ ( s ) =  ~ ~ f Kl/'(s,s')Imfll,'(s')ds ' (2.10) 

I'=0 I'=2 4 
(see BGN for further details concerning the kernels K~/'). 

The fundamental advantage of the relations (2.9) over the unphysical region 
crossing constraints [26-27] is that they relate physically accessible quantities. The 
price to pay is of course that they involve an infinite number of partial waves. 

It has been shown by BGN that in the so-called " s -p  approximation" i.e. setting 
Imj~,(s)- 0 for l' ~> 2 in (2.9) one obtains the Chew-Mandelstam equations [28], 
which appear as well defined approximations to exact equations. However, Lovelace 
pointed out [29] that the Chew-Mandelstam equations could not have physically 
reasonable solutions owing to their behaviour at s = co. Therefore the presence of 
the higher wave contribution ~/(s) (or its analytic continuation above s = 60) is 
crucial mathematically. However, if ~/(s) is small in the low energy region, as turns 
out to be the case in practice (see further on), we see that the Chew-Mandelstam 
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equations must be reinterpreted as relations which must be approximately saturated 
by the amplitude, and not as equations whose exact solutions should be close to 
physical amplitudes. 

We now come to a very important property of  eq. (2.9) which we shall use in 
the following. In the right-hand side of  (2.9) there are three terms: a polynomial 
subtraction term, an integral over s- and p-waves, and ~ ( s ) .  The polynomial satis- 
fies all crossing constraints trivially. It has been shown by BGN that  the integral 
over s- and p-waves satisfies all Martin inequalities and Roskies relations automati- 
cally whatever the values of  the Im f[,'(s) l' = 0,1 provided they are positive. The 
" t rue"  ~/(s), i.e. as calculated if we knew Imfll,'(s) l'~> 2 exactly, satisfies the con- 
straints by itself also. But, if we construct a function ~/(s) which satisfies the con- 
straints, and choose some functions Imf/ , ' (s)  ~> 0 (l' = 0,1), thenf[(s) as defined by 
the right-hand side of  (2.9) will automatically comply with all requirements of  
crossing whatever Im f//, ' are chosen. 

2.3. Driving terms 

In order to use eq. (2.9) in practice, we split the s' integration into two parts, 
introducing some cutoff  parameter N 

2 1 N 
fl(s)=S.T. + ~ ~ f K~/'(s,s')Imff'(s')ds' +d~t(s ) , (2.11) 

I '=0 l'=0 4 

where S.T. is the first-order polynomial subtraction term written in eq. (2.9), and 
~ ( s )  is called a driving term. The driving term consists of  two pieces 

d~l(s ) = d{I(s) + dl~(s) . (2.12) 

The first piece d]I(s) is the contribution of  all waves for s' > N ,  and the second 
dt~(s) of higher waves l' ~> 2 for s' < N, i.e. 

dlI1(s ) = ~_j Kl'/'(s,s' ) Im fl I' (s') ds' , (2.13a) 
I '=0 1'=0 N 

(213b) 
I '=0 l'=2 4 

We choose for N an energy squared above which a Regge representation of  the am- 
plitude is convenient. Therefore the evaluation of d~  is quite simple if we compute 
the Regge contribution in the original dispersion relation (2.1) and project the result 
on partial waves, e.g. for the rr°~r ° amplitude we would have 

hr ° ~r ° .~ 1 1 
d I (a- ,=~ f dZPl(Z) 1 f ds'[a(s',t)AOO(s',O)+b(s',t,s)AOO(s',t)], (2.14) 

-1 N 
where a(s',t) and b(s',t,s) can be read off  from eq. (2.1). 
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For dl~(s) we make the rather drastic approximation of  retaining only the reso- 
nance contributions and neglecting completely the low-energy part. The main justi- 
fication is phenomenological: higher partial wave lrTr amplitudes are very small at 
low energies, and the neglected contributions fall well within the errors we shall 
allow on the estimation of  the driving terms, if we restrict ourselves to studying 

2 the equations in a limited energy region above threshold, e.g. 4 ~< s ~< 60 m,r. 
In practice, we have chosen N = 110 m 2 i.e. ha l fway between the f0 and g 

resonances. The f0 resonance contributes to d~; we have taken a massMfo= 1269 MeV 
and an elastic partial width I'~1o = 125 MeV. To estimate d~ 1 we assume a Regge pole 
plus pomeron exchange behaviour; for the Regge exchange component we take 
exchange degenerate p + f0 poles with the Lovelace-Veneziano residue function [30] 
evaluated for a universal p coupling constant off2/41r = 2.4. The diffractive corn- 

! 
ponent is represented as a simple pomeron exchange pole with a slope Otp = 0.4 GeV -2  
and parameters chosen to give an asymptotic cross section cr~ = 1/m 2 ~ 20 mb and 
a logarithmic slope for the differential cross section o f b  = 10 (GeV/c) -2  at 
s = 10 GeV 2 . In s- and p-waves, the resulting driving terms can be approximately 
parametrized between threshold and N by 

3 
4 ( s )  = ( s - a )  ~ dI . k (S -4 )  k -1  . (2.15) 

k=l 

The coefficients, ~ k, are given in table 2. The major contribution to dO(s) comes 
from the f0 resonance, while pomeron exchange provides the dominant part of  

2 1 do(s ) and d 1 (s) is quite small. The errors that must be attached to the estimation 
of  the driving terms come from phenomenological (or experimental) uncertainties, 
e.g. errors on 1-'~, aoo, the p residue function 3,0(0, and theoretical uncertainties - 
neglecting low-energy contributions in (2.13b), and not imposing in this work the 
supplementary conditions (2.7). (In an exact theory it should not matter whether 
one computes the driving terms in eq. (2.14), and the similar one for d~,  using the 
full integration range - 1 ~< cos 0 ~< 1 or only half of  it 0 ~< cos 0 ~< 1, owing to 
Bose statistics. In an actual parametrization the two results are generally different, 
but one can easily check that in practice the discrepancy is very small at low 
energies - less that 1% for s < 5 - and in particular for 0 ~< s ~< 4; it increases with 
energy to become quite large above I(GeV) 2. 

We must emphasize that eq. (2.15) is only a representation of  the computed 
driving terms, valid to first approximation in the region 10 < s < N where they are 
not negligible numerically. However, in the region 0 ~< s ~< 4 this approximation is 
very poor, and eq. (2.15) violate the unphysical region crossing constraints, whereas 
the computed driving terms do not. One can even construct driving terms which 
satisfy all crossing constraints exactly [8], and which agree with eq. (2.15) for 
10 < s < N  well within the errors that we allow. 

Our qualitative results are somewhat independent of  the exact values of  the 
driving terms, provided the order o f  magnitude is correct, and therefore our experi- 
mental ignorance of  7rlr Regge parameters is not a practical drawback here. 
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2.4. Definition. and construction o f  the solutions 

Once the driving terms dI(s) are known, eq. (2.11) becomes a system of non 
linear singular integral equations for the amplitude in the region 4 ~< s ~< N when 
put together with the unitarity condition 

i - (~(s ) )  2 
I m g ( s )  =p(s)lf[(s)l 2 + 4p(s) (2.16) 

if the elasticity parameters ~ ( s )  are given (for the notations, and definition ofp(s)  
and ~ ( s )  see appendix A), and we want to investigate the classes of  amplitudes 
satisfying these equations. 

However, in the present work, we are primarily interested in studying the 7rTr 
amplitudes below 1.1 GeV, i.e. for 4 ~< s ~ 60. In that region, one knows phenom- 
enologically that higher partial wave amplitudes l ~> 2 are small and essentially real, 
therefore unitarity (2.16) is not a strong constraint on these waves and we shall 
concentrate on the s- and p-wave equations l = 0, 1. Once these equations are solved, 
in a sense we will now describe, higher partial-wave amplitudes are known without 
any further iteration of  the equations [7] for 4 ~< s <~ 60, and the resulting total 
amplitude satisfies fixed t dispersion relations, crossing and unitarity for s ~ 60 to 
a very good accuracy [7]. We do not a t tempt  to use eqs. (2.11) and (2.16) as integral 
equations - for instance through an iteration scheme - for technical and mathe- 
matical reasons (e.g. we do not know a priori the multiplicity of  solutions corre- 

"sponding to given values of  the scattering lengths and driving terms). Instead we 
define a solution, i.e. a unitary and crossing symmetric amplitude at low energies, 
by the following criterion. 

"e-criterion": Sincef[(s) as defined by eq. (2.11) for l = 0, 1, in terms of  
, / i  t . . . . . . .  

Imf~, ( s ) ,  (a) satisfies all crossing and posltivlty constraints whatever the value of 
Im f f ' ( s ' )  > 0 [7], and (b) has by construction [7] the imaginary part ImfI(s) ,  we 
define a solution to eq. (2.11) by requiring that all three amplitudes f~n(s), f l  (s), 
f2(s)  also satisfy unitarity Im fl/(s) = ~ l f I ( s ) l  2 to a given accuracy e (e.g. I%) 
in the eleastic region. 

We confine ourselves to the elastic region and do not extend the range of  our 
criterion to s = N, which ispossible in principle (see eqs. (2.11) and (2.16)), because 
the elasticity parameters rTj(s) are not sufficiently well measured up to s = N at 
present. However, we shall make full use of  the important experimental observation 
[21,22,  3 1 - 3 5  ] that ~rlr amplitudes are nearly elastic up to the KK, threshold 
(~l(s) ~ l s < 4m2K) and we choose the elastic region to be s < 4m 2 (indeed 4rr 
inelasticity seems weaker than 1% below the KK threshold, this sets the order of  
magnitude of e). Above s = 4m 2 , we check a posteriori that the deviation of~l (s )  
from the unitarity relation (2.16) is compatible with the errors we can accept on 
the values of  ~l(s) and the driving terms. 

In order to realize this, we first choose Im f l ( s )  to be the imaginary part of  an 
amplitude ~ ( s )  parametrized so that it satisfies elastic unitarity exactly below s = 4m 2,  
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and inelastic unitarity (2.16) with a given ~/(s) above that energy 

Im f/(s)  - Im g/(s).  (2.17) 

We then compute f/(s) by eq. (2.11) and we fix the parameters in g/(s) by mini- 
mizing the quantity 

60 
I l l -  gll = f oo(s)[f/(s) -g/(s) l  2 ds ,  (2.18) 

4 

where co(s) is a positive weight function (the CERN program MINUIT was used). 
In practice we have chosen 

P 
I l f -  gll = ~  coilflI(Si) - g/(si)l 2 , (2.19) 

i= 1 

the s i being a set of points (typically 5 to 10 points) in the region 4 ~< s i <~ 60. One 
of the points chosen is threshold, so that we minimize in particular on the s-wave 
slopes bo 0, b02 and the p-wave scattering length a~ defined in appendix A (the s-wave 
scattering lengths are subtraction constants in eq. (2.11)). 

To prevent the parametrization from playing a crucial role, we have used two 
very different analytic forms, which both lead to the same results in practice. The 
first is a simple K-matrix approach 

g/(s) = [K/(s) -1 + C,~(s)] -1 , (2.20) 

where C~(s) is the Chew-Mandelstam function 

2 ~ s - 4  log 4X/T~-s+x/~ 
c ( s )  2 ' 

and the K-matrix can be taken as a rational function in s 

Ki(s) 4810+aI(s -4)+aI2(s -4)2+""  
- , ( 2 . 2 1 )  

1 + C/ (s -4)  + CI2(s- 4) 2 + . . .  

which is elastic up to infinity. Inelasticity may be introduced by adding to eq. (2.21) 
a term of t h e  form HI(s) CK(s ) where HI(s) is another rational function and 

2 
log -v/mm2-1 Atan cK(s) = 7  . 

V-.K ~ 
(2.22i 

This method is simple and practical, however, it is not well suited for incorporating 
a given inelasticity, and another method, fully described in appendix B, consists in 
expressing the partial wave S-matrix elements as products of rational functions: 
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._/--5--, 
SI(s) : [1 + 2i V ~  -~ gI(s)] 

z - z ~  z+z R i - az n 
• . . .  (2.23) 

z--z R z+z~ i + az n 

[where z R is complex (resonanCe pole), a is real and n is an odd integer, see appen- 
dix B], z being a conformal variable which unfolds the appropriate Riemann sheets 
and is defined in appendix B. Within this parametrization it is easy to insert a given 
inelasticity for s ~> 4m 2 ,  in particular the S* effect [21,22,  31 -35] .  The two 
s-wave scattering lengths a 0 and a02, which determine the subtraction terms in eq.(2.11), 
are of  course among the parameters in eqs. (2.21) and (2.23). 

Once the minimization is achieved, we may adopt the following philosophy. The 
functions i f ( s )  are analytic in s and are by construction the projections of  a crossing 
symmetric total amplitude which satisfies fixed t dispersion relations, while the 
gll(s) are analytic in s and satisfy unitarity (2.16) with given inelasticities. Further- 
more in the region of  interest we have 

Ill(s) - g/(s)l <~ e ,  4 <~ s <~ 60 .  (2.24) 

Therefore we consider both / ' / /and  g[ as approximations to the same amplitude 
which is analytic, unitary and crossing symmetric, and we call either of  them a 
solution. Once we are in the vicinity o f  a solution (if it exists) it is sufficient to 
iterate the equations in order to obtain the numerical solution (provided we have 
fixed a sufficient number of  conditions for it to be unique). However it is worth 
emphasizing that we are also buidling explicit analytic models o f  mr amplitudes, 
i.e. the functions gI(s), which are unitary and satisfy crossing in the sense of  our 
e-criterion, and which can be used in other applications. 

It may happen eventually that by undertaking a more complete treatment of  
the equations - e.g. using the supplementary conditions [5, 7] - one may be able 
to exclude some of  our solutions. However, we think that in trying to do this at 
present we may eliminate physically acceptable solutions since our theoretical 
and phenomenological knowledge is not sufficiently accurate and complete (e.g. 
if we choose the inelastic threshold to be s = 4m 2 ,  we cannot take strictly e = 0 
in our e-criterion, since a theorem by Martin [24] says that the mr amplitude must 
vanish identically if the 41r inelasticity vanishes anywhere between s = 16 and 
s = 20). In other words, given an arbitrary set of  s- and p-waves, one can always 
construct driving terms so that eq. (2.11) is satisfied; however, these driving terms 
will in general be in contradiction with phenomenological estimates (e.g. averaged 
asymptotic cross sections orders of  magnitude too large, or even negative) and we 
can exclude them, but it is only experimental and phenomenological arguments 
which can discriminate between our solutions at present. 
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2.5. Higher partial waves 

Once we have determined s- and p-wave amplitudes, higher partial waves are com- 
puted directly by eq. (2.11) which we may write as 

2 1 N 
fi(s) = ~ ~ f Kll'iI'(s,s')Imfi'(s') ds' 

I '=0 /'=0 4 

N imfI(s ' )  +'Sits' 
+ ( s - 4 ) l  f ds'  ~ ' l ~ a ,  l / > 2  (2.25) 

7r 4 (s'-4)l(s'-s) 

where we have redefined the driving term in order to extract the explicit direct 
channel right-hand cut contribution which has the good threshold behaviour [7], 
and which contains the direct channel resonances (e.g. the f0 for l = 2,1 -- 0) that 
we put in by hand. In the region 4 ~< s ~< 60 unitarity is a very weak contraint on 
these waves, therefore we shall define the phase shift by the approximate relation 

tan ~f(s) = 1 / ~  Re f l ( s ) ,  (2.26) 

(we may check a posteriori that neglecting the low-energy contribution in the 
second term of the r.h.s, of  (2.25) is a good approximation).  

In eq. (2.25), the first term i.e. the s- and p-wave contribution, is the dominant 
one at low energies, until the effects of  direct channel resonances are felt. We re- 
mark that  for l ~> 2 it is important to compute the driving terms by projecting on 
the whole range - 1  ~< cos 0 ~< 1 [see eq. (2.14)] if we want to preserve the threshold 
behaviour without invoking the supplementary conditions (2.7) which we have not 
studied or used here. 

2. 6 Basic phenomenological assumptions 

In all this work we have restricted ourselves to a particular set of 7r~r amplitudes 
defined by physical criteria which we now enumerate. 

(a) We assume the existence of  the I = l = 1 p-resonance, and we impose its mass 
mp and width Po (varying these parameters within experimental errors). The p-wave 
scattering length itself a l  is computed from the equations, it is not imposed. 

(b) We assume that to a good approximation (1%) inelasticity starts at s = 4m 2 
and not at s = 16m 2. Our treatment of  the inelasticity will be described in sect. 4. 

(c) The Regge parameters and higher partial-wave resonances enable us to estimate 
the driving terms, as described above, within definite error bands which we do not 
transgress. 

(d) We also assume that the exotic I = 2 s-wave is non-resonant below 1 GeV, and 
we forbid resonance poles in our parametrization of  this amplitude. 
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2. 7. Unsubtracted dispersion relation 

Under plausible assumptions - Pomeranchuk theorem and non-dominance of 
the real part over the imaginary part asymptotically - the I t = 1 amplitude satisfies 
an unsubtracted dispersion relation 

I f  I I 1 ] d s ' ,  (2.27) 2F°(s , t )  + 3Fl ( s , t )  - 5F2(s,t)  = A(s',t) s ' - s  s'--u 
4 

where 

A ( s , t ) -  2 AO(s,t) + 3 A l(s,t) - 5 A 2(s,t) , 

a consequence of which is the Olsson sum rule [36]: 
o o  

L =-2a O -  5a 2 3 J ds [o"+"-(s~ Oto t (s)] (2.28) ~'[-Tr + 

47r2 4 X/s(s-4) ' tot , "  

[cf. also eq. (A.7)]. 
Assuming A(s,t) is dominated by p-exchange at high energies 

A(s,t) --- 70(0 s ap(t) , s > N ,  (2.29) 

it is natural to split eq. (2.28) into two parts 

L = L s p + L  , (2.30) 

where Lsp is the s- and p-wave contribution to the right-hand side of (2.28) for 
s ~< N, and L = includes the higher wave l ~> 2 and asymptotic s > N contributions. 
Choosing N ~ 110m 2, the only l/> 2 resonance to be taken into account is the f0 
and we obtain 

40 F el fo 8 Tp (0) 
L ~ " + 1 (2.31) 

mfo(mf2 ° - 4) lr N~ 

We may incorporate eqs. (2.27) and (2.28) in our analysis. However, in eq. (2.30) 
L~ is quite important (20 to 30% of the total) and this requires a good knowledge 
of the p residue function. Therefore, in order not to bias our results, we prefer to 
operate backwards and, for each of our solutions, to use eqs. (2.27) and (2.28) to 
extract the implications concerning 3'p(t) [ 1,2, 37]. For instance we can define 
L~ as the value which saturates eq. (2.30) once s- and p-waves are known, and then 
compare it with the available (rather ill-defined) experimental information. 

3. Theoretical results 

We did not encounter any basic technical obstacle in carrying out our programme, 
The most important problem was to discover the actual multiplicity o f  solutions, 
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and to know how many constraints were necessary for a solution to be unique. 
The usefulness of  the Roy equations, both  theoretical and phenomenological, as 
argued in ref. [7] is established by observing that (a) we have found no published 
model which satisfies our criterion, and (b) simple analytic forms which fit the 
data will in general violate the equations grossly. However, for several models which 
incorporate the p meson by construction [ 12, 38], we can produce amplitudes 
which are close to the model predictions near threshold (s ~ m 2) and do satisfy 
the criterion. 

Our most interesting result concerns the multiplicity of  the solutions. We have 
already explained this in ref. [ 1 ]. Our assumptions of  subsect. 2.6 do not put 
stronger constraints on the s-wave scattering lengths a 0 and a 2 than to lie in a do- 
main outlined in fig. 1 of  ref. [ 1 ]. By no means does one obtain quasi-uniqueness 
as hinted by some model calculations [ 12] based on the unphysical region crossing 
contraints. Since our amplitudes satisfy these contraints they are explicit counter- 
examples to the uniqueness claim. There are however some restrictions: for instance 
the values a 0 = a 2 = 0 can be reached only by introducing an exotic I = 2 resonance 
in contradiction with our assumption (2.6d). 

Once a O, a2o, mp and Up are fixed, the very low-energy parameters (i.e. the p-wave 
scattering length and the s-wave effective ranges) are essentially determined. Further- 
more all amplitudes in our domain are such that 60(mp) > 0 and 62(mp) < 0 so 
that, as a nearly trivial consequence of crossing, each s-wave amplitude possesses a 
zero in the region 0 ~<s ~< 4 or near it (e.g. if a 2 > 0 (or a 0 < 0) the zero off02 (or 
f~0) lies in the physical region s > 4). However there remains an arbitrariness in the 
l = I = 0 phase; one can choose the energy at which 6 0 passes through e.g. 90 °. 

To summarize, in order to obtain a more or less unique set of  amplitudes under 
our previous assumptions we need to specify five parameters which can be taken as 
0 2 energy where 60 = 90 °. a O, a O, mp, Up and the 

Our findings are qualitatively similar to those of  Morgan and Shaw [39]. These 
authors found that  in addition to imposing mp, Pp they could fix at least 4 more 
parameters which they took to be aO/a 2, 6 0 (600 MeV), 60 (900 MeV) and 62(mp). 
Our more complete treatment of  crossing allows us to reduce this number to 3 and 
for arbitrary values within a domain of  these 3 parameters we do find consistent 
solutions *. It is quite easy to understand these results by referring to the Born 
term of  a Lagrangian containing a contact -~ .~0 t .  n) 2 term, a scalar interaction 
i mEge( n.n)e and a vector interaction gpeiikTri3unfla ~ as represented in fig. 1. In Born 

2 2 approximation the amplitude depends on five parameters, i.e. ~, mp, m e, gp, ge 
which can be eliminated in favour o f a  0, a 2, mp, Fp, and a combination of m e and 
F e and which are all uncorrelated by crossing. Using the notation of Chew and 
Mandelstam 

A ' ~  (s,t,u) =A(s,t,u) 6 ~ 6 r  ~ +A(t,s,u) 6 r 6 ~  +A(u,t,s) 6~6~,  r , (3.1) 

* We are indebted to Dr. G. Shaw for a clarifying correspondence on this point. 
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,ff 

Fig. 1. Born terms of  a Lagrangian model  in rrrr scattering. All crossed diagrams are unders tood  
to be present.  

we would have 
m 2 

ABOm(s,t,u)=X+g 2 e + 2 s-u s-t2_u] 
m2_s go [m-2--t + ' (3.2) 

e 0 mp 
and, in Born approximation 

r 16g2 m2 2 - - -  + + n (3.3a) 
32rr m a 0 = 5X +ge b m 2 _ 4 m  2 m-2 ' 

e 7r P 

m 2 

32~rmTra02=2X+2g 2 - 8 g  2 ~2o2 , (3.3b) 

so that 

3g2mTr] 9mTr g~P (3.4) 3 [  g2m~ + >~ 
2a00-5a02= ~-~ Um 2 - 4 m  2 m 2 ~ -  4r r '  

e ~ p p 

which shows that the value a 0 = a 2 -- 0 cannot be reached in the absence of  an 
exotic pole. It is known that one can unitarize such a Lagrangian by using e.g. the 
Pad~ method [40] and preserve approximately its crossing properties provided the 
coupling constants are not too large (notice that our domain lies inside -0 .1  ~< a 0 ~< 0.8, 
- 0 . 2  ~< a 2 < 0.15 so that on an absolute scale, e.g. axiomatic bounds [4 1] a00 /> -7 .5 ,  
a 2 ~> -7 .1 ,  we are dealing with very small scattering lengths) and unitarity effects 
will not change the basic character of  the Born term. We remark that allowing for 
an exotic resonance would add two more parameters, as would the introduction 
o f  another I = 0 resonance. 

The fact that one can choose, at given a 0 and a~), the energy where 600 = 90 ° is 
highly reminiscent of  the CDD ambiguity. Since Roy's  equations have some similari- 
ties with the equations considered by Atkinson [14] within the Mandelstam repre- 
sentation, we may be in the presence of  the same CDD ambituity as noticed by 
Atkinson and Warnock [1 5]. However, our ambiguities may also come from the 
fact that we have not really taken care of  the asymptotic properties of  the equations 
- we lump any deviation at high energies in the errors attributed to the driving 
terms. In any case, this is a very interesting problem to which we hope to come back. 

To conclude, we are comforted to understand our results in the simple language 
of  Lagrangian field theory and, perhaps, within S-matrix theory as developed by 
Atkinson [14], although it may be disappointing that the uniqueness hopes of  the 
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low-energy bootstrap I1 l] and of some models are disproved. In a phenomenol- 
ogical language, crossing constrains the low energy parameters but not the striking 
features of the low-energy nn amplitudes i.e. the resonances. In order to determine 
the physical amplitude, we must incorporate in our analysis some experimental 
information about the s-waves, which we shall now do. 

4. Phenomenological results 

In this section we supplement the phenomenological assumptions of subsect. 2.6 
by requiring agreement with all available experimental information on the nn sys- 
tem below 1.1 GeV. Most of the information comes from recent high statistics 
n+zr- production experiments [20-22,  31-35].  Apart from the rho meson param- 
eters, these experiments mainly constrain the isoscalar s-wave phase shift 60 in the 
region 500 MeV ~<M,,, ~< 1100 MeV. Measurements of other quantities are exam- 
ined a posteriori and are found to be insufficiently accurate at present to select 
further between our solutions. 

4.1. Further phenomenological assumptions 

Therefore we now further restrict our set of nn amplitudes and require agree- 
ment with the following additional physical information. 

(e) There is a strong cusp or S* effect_causing 60 to accelerate through 180 ° 
and a sharp onset of inelasticity at the KK threshold [21,22, 31-35 ]. 

(f) The isoscalar s-wave phase shift 60 in the mass range 500 MeV ~<Mn~ r < 
900 MeV must lie in the between-down [42] or up-down [22] bands. 

When we undertook this analysis the isoscalar phase shift 60 was assumed to be 
of the between-down type [42] and our most detailed results were obtained using 
the Saclay [20] and Berkeley [21 ] phases. Chew-Low extrapolation results from 
the high statistics CERN-Munich experiment [33-35] were in good agreement 
with the Berkeley phases. However a recent amplitude analysis [22] yields phases 
noticeably higher than previous results. We therefore also present our preliminary 
analysis of these new solution 1 (CM-EM1) phases [22]. It should be remarked here 
that another analysis [35] of the same data, based on slightly different assumptions 
regarding the structure of the dipion production amplitudes, leads to phases closer 
to those from Chew-Low extrapolation than to CM-EM1 (see fig. 5 below). Very 
grossly, there is a 5 ° to 10 ° difference between the Saclay (SAC) and the Berkeley 
(BKLY) phases and a similar difference between the latter and the CM-EM1 phases. 
It is convenient to analyze the results obtained by fitting on a given data set and then 
to see how the results are altered when another set is chosen. We adopt the criterion 
that the X 2 per experimental point must be less than 2 to define a "fi t" to the data. 

The conformal variable z, described in appendix B, is well suited to describe a 
given behaviour in the region of the KK threshold and the results presented in this 
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Table 1 
Fixed parameters in the Saclay and Berkeley solutions [cf. eqs. (B.6), (B.15), (B.17)] 

Z s . = 0 . 9 2 8 - i 0 . 0 7 4 0  ES .=  9 9 8 - i  66MeV 

z o =0.468- i0 .0126  E o = 7 6 7 - i  67MeV 
z?, = 0.539 + i0.0088 E o, = 1630 - i l20MeV 

z o, = 0.537 - i0.0107 X o, = 0.36 

a] = 0.872 

section were all derived in terms o f  this variable. In particular the S* effect is de- 
scribed by a pole in the z variable, the parameters of  which were found by  fitting 
to the inelasticity r/0(s) of  ref. [21] and to a given set of  phases 50 below the KK 
threshold. In addition, the phase at the KK threshold was constrained to be 180 ° 
to conform with the experimental  vanishing of  the Y~I moment  [21 ]. These S* 
parameters were found to be essentially independent o f  the behaviour below 
800 MeV and are given in table 1. We remark here that a much narrower S* pole 
is used to fit the CERN phases. We also investigated the sensitivity of  our results 

e'  i n f0 ( s )  above 1100 MeV. to the existence of  an resonance 
In order to obtain good input output  agreement for the p-wave above 800 MeV 

within this parametrization,  we found it necessary to include a background singu- 
larity. For convenience we choose to represent this background by an inelastic p '  
resonance either under the f or the g meson. The parameters taken for this p '  reso- 
nance and for the p resonance itself are also given in table 1. The I = 2 s-wave am- 
plitude is taken to be purely elastic. For a full discussion of  our parametrization,  
we refer the interested reader to appendix B. 

The driving term parameters to be substituted in eq. (2.15) were calculated as 
described in subsect. 2.3 and are listed in table 2. We estimate the errors due to un- 
certainties in experimental  quantities and neglected contributions to be less than 
30% for d°(s )  and 50% for d~(s) and d2(s).  

4.2. General description o f  solutions s -and  p-waves 

The mult ipl ici ty of  solutions described in sect. 3 is reduced, firstly, by  fixing 
the isoscalar s-wave amplitude near the KK. threshold and above to satisfy the 

Table 2 
Driving term parameters 

k 1 2 3 
(l,/') 

(0,0) 9.12 X 10 -4  9.78 X 10 - s  0 
(1,1) 1.36 X 10 -4  8.36 X 10 -6  i.7~ X 10 -7  
(0,2) 5.09 X 10 -4  6.32 × 10 - s  -3.78 × 10 -7  



J.L. Basdevant et aL, ~,r amplitudes 429 

phenomelogocial requirement e). In this way, we are reduced to just one solution 
for each point in the explored region of  the (a 0, a 2) plane as outlined in fig. 1 of  
ref. [1]. Secondly, we require the isoscalar s-wave phase shift 60 to satisfy condi- 
tion f). This reduces the number of  possible 7rlr amplitudes further leaving, for any 
given set of  experimental phase shifts, only a very narrow band of finite extent 
in the (a 0, a 2) plane. This allowed region, hereafter called a universal curve, fol- 
lowing Morgan and Shaw [39], is shown in fig. 2 for each of the three sets of  ex- 
perimental phase shifts 60. We note there is a systematic downward displacement 
of  the universal curve associated with the upward displacement of  the experimental 
phase shifts 80 in passing from the Saclay to the CM-EM1 results. If  we allow for 
all of the uncertainties in the physical input, we find an error band associated with 
each of  these curves - viz., for fixed a 0, the uncertainty in a 2 is Aa 2 = -+ 0.007. 
The major contribution to this estimated error comes from allowing for the possible 
existence of an e' resonance. The effect of  including an e' resonance is to displace 
the universal curve upwards. 

It is interesting to compare the universal curves of  fig. 2 with the results from 
the soft meson theory of  low-energy rrTr interactions due to Weinberg [43]. The as- 
sumptions of  linearity and current algebra give 

L = 2 a  O - 5 a O  2 = 1 8 a ] -  3 _ 0 . 6 0 + 0 . 0 6  (4.1) 
4rr F 2 

7r 

I 2 
ao SAC 

o.o~ ~ BKLY 

0.02 
-EM1 

Ol L o 
a o 

-0.02 

-0.04 

-0.06 
Weinberg 

-0.08 

-0.12 L- 

Fig. 2. Universal curves correlating the two s-wave scattering lengths for the Saclay (SAC), 
Berkeley (BKLY) and CM-EM1 phase shifts respectively. The est imated error band  associated 
with each o f  these curves is discussed in the  text.  



430 J.L. Basdevant et al., 7rrr amplitudes 

for the universal curve, where F~r is the PCAC constant. The further assumption of 
non exoticity for the a term implies 

0 2 = 7 (4.2) 
ao/a 0 - ~  , 

and combined with eq. (4.1) gives the Weinberg predictions for the scattering lengths, 
shown in fig. 2. The universal curves of fig. 2 are reproduced by the following ap- 
proximate parametrizations, 

SAC: 2aOo-8a2 =0.62 +(a 0 - 0 . 2 )  2 +0 .06 ,  (4.3) 

BKLY: 2 a ° - 8 a 2 = O . 6 9 + ( a O - 0 . 2 )  2 +0 .06 ,  (4.3) 

CM-EMI: 2a 0 - 8 4 2  =0.84 + (a 0 - 0 . 2 5 )  2 + 0.06,  (4.5) 

where the quoted error is estimated in the same way as Aa 2 above. Furthermore 
both the Saclay and Berkeley data restrict the isoscalar s-wave scattering length to 
the range 

-0.05 < a 0 < 0.6 (4.6) 

while the CM-EM1 phases require a 0 > 0.15. 
The p-wave scattering length a~ is rather stable and close to the Weinberg value 

0.33 -+ 0.03, whereas the linear approximation prediction a~ = ~ L is not well satis- 
fied except for s-wave scattering lengths close to the Weinberg values. 

The variation of the s- and p-wave scattering lengths and s-wave slopes [defined 
in eq. (A4)] along the universal curve is given in tables 3 and 4 for the Saclay and 
CM-EM1 phase shifts. Fixing a 0 essentially determines all these low energy param- 
eters. The isoscalar s-wave slope, in particular, has a qualitatively different behav- 
iour to that of the linear approximation, which gives b 0 - 1 - ~ L  and b 2 = 1 -gL.  Future 
analyses of low energy zrn experiments, such as K~zt decay, should be constrained 
in their choice ofa  0 and b 0 so as to be compatible'with the results spanned by 
tables 3 and 4. 

In figs. 3 -5  we show three typical solutions for each of the three different sets 
of experimental phase shifts. The three curves in each figure illustrate the spread 
of allowed behaviour below 500 MeV for a given set of experimentally determined 
s-wave phase shifts above 500 MeV, with the present statistical accuracy of the ex- 
periments. In each case we give the two extreme solutions and an intermediate solu- 
tion which, for the Saclay and Berkeley phase shifts, corresponds to the Weinberg 
scattering lengths. For the CM-EM1 phase shifts, the Weinberg predictions corre- 
spond to the lowest allowed values for the scattering lengths. In fig. 5 we also in- 
clude the phase shifts 80 obtained from a simple Chew-Low extrapolation [33] of 
the CERN-Munich data and from an amplitude analysis based on spin and phase 
coherence [35], in order to illustrate the ambiguities involved in nn phase-shift 
analyses. The resolution of these ambiguities in rrTr phase-shift analysis is an impor- 
tant problem for future lrlr phenomenology; a possible approach is suggested in sub- 
sect. 4.5. 
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Table 3. 
Low energy s- and p-wave parameters calculated for the Saclay phase shifts 

ao 0 b 0 a 2 b2o a l  

-0 .056  0.15 +- 0.03 -0 .103  -+ 0.007 -0 .061 -+ 0.007 0.030 +- 0.002 
0.16 0.21 +- 0.03 -0 .037  -+ 0.007 -0 .065 -+ 0.007 0.032 +- 0.002 
0.30 0.19 -+ 0.03 -0 .006  -+ 0.007 -0 .074  -+ 0.007 0.035 -+ 0.002 
0.58 0.03 +- 0.03 + 0.047 -+ 0.007 -0.096 +- 0.007 0.040 +- 0.002 

2 0 0 ° 1  I I I I I I I I [ f  I 

I I 

+ 

~1~00 a" I 

100 ° _ 01 I I 
1000  1100 

bo 

50* 

1) 

(3) 

-10" bZo 

-20* 

-30* 

I I I I I I I I I I I 
300  4.00 500  6 0 0  700  800  9 0 0  1000 1100 

M~n MeV 

Fig. 3. Typical solutions for the s-wave amplitudes fitted to Saclay phase shifts. The curves 
correspond to (1) a ° = -0 .06 ,  (2) a ° = 0.16 and (3) a ° = 0.58. 
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Table 4 
Low energy s- and p-wave parameters calculated for the CM-EM1 phase shifts 

a ° b ° a~ b~ al 

0.17 0.32 • 0.03 -0 .066  + 0.007 -0 .083 • 0.007 0.040 • 0.002 
0.31 0.30 -+ 0.03 -0 .030  • 0.007 -0 .090  • 0.007 0.042 + 0.002 
0.40 0.27 • 0.03 -0 .010  + 0.007 -0 .093 -+ 0.007 0.042 + 0.002 
0.59 0.14 • 0.03 +0.028 • 0.007 -0 .106 • 0.007 0.045 • 0.002 

 oo., , , , , ,  , f  

J 

lOO* 

1.o 

o 

i i 

I I 
l O O O  11oo 

50"1"- (3) 

0 

- 1 0  ° 

-20* 

(3) 

-30* 

I I I I I I I i I 
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hi 'r== MeV 

Fig. 4. Typical solutions for the s-wave amplitudes fitted to the Berkeley data. The curves cor- 
respond to (1)a  ° = -0 .05 ,  (2)a°o = 0.17 and (3 )a  ° = 0.59. 



J.L. Basdevant et aL, ~rTr amplitudes 433 

200* I 

150% 

I I I I I I I I | 

100" 

50* 

. 

I) 

-1o. b'o 

-20* 
-30* 

(1) 

300 ~00 5o0 600 700 800 900 1000 1100 

M.~n MeV 

Fig. 5. Typical solutions for the s-wave amplitudes fitted to the CM-EM1 phase shifts [22] | .  
Also shown are the phases of Grayer et al. [33] ~ and Hyams et al. [35] ~ from the same ex- 
periment. The curves correspond to (1) ao ° = 0.17, (2) ao 0 = 0.31 and (3) a°o --- 0.59. 

In table 5, we give the mathematical  and associated physical parameters for the 
Saclay and Berkeley solutions shown in figs. 3 and 4. As well as the s- and p-wave 
scattering lengths and s-wave slopes, we tabulate the mass and width m e ,  r e asso- 
ciated with the e resonance pole and the d- and f-wave scattering lengths. 

In contrast  to our set o f  ~rrr amplitudes covering the whole range (4.6), Pennington 
and Protopopescu [10] have claimed that imposing the Berkeley data in the Roy 
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Table 5 
Variable parameters in the Saclay (SAC) and Berkeley (BKLY) solutions [cf. eqs. (B.6), (B.15), 
(B. 17)]. These solutions do not contain an e' resonance above 1100 MeV and therefore lie in 
the lower parts of the error bands associated with the universal curves in fig. 2 

Param. SAC 1 SAC 2 SAC 3 BLKY 1 BKLY 2 BKLY 3 

a ° -0.058 0.165 0.583 -0.054 0.169 0.587 

a 2 -0.105 -0.038 0.042 -0.115 -0.048 0.032 

a~ 0.0303 0.0324 0.0408 0.0336 0.0351 0.0431 

b ° 0.154 0.210 0.057 0.178 0.248 0.097 

b~ -0.064 -0.068 -0.101 -0.071 -0.075 -0.102 

m e 569 MeV 407 MeV 267 MeV 517 MeV 439 MeV 309 MeV 

I' e 672 MeV 875 MeV 732 MeV 477 MeV 671 MeV 624 MeV 

a2 ° × 104 15.9 15.7 21.8 17.9 17.2 23.1 

a 2 × 104 -1.96 -0.49 5.77 -1.11 0.38 6.63 

a31 × 104 0.14 0.41 1.26 0.15 0.46 1.35 

Re z e 0.721 0.718 0.655 0.656 0.670 0.614 

I m z  e -0.224 -0.326 -0.411 -0.196 -0.282 -0.368 
o ao 0.683 0.970 1.55 0.673 0.933 1.56 

~3o ° -0.332 -0.296 -0.411 -0.456 -0.339 -0.458 

Re f o  1.31 1.10 1.01 1.21 1.18 0.939 

Im Zo O 1.13 1.47 1.19 0.860 1.25 1.14 

0 ~ -41  ° - 6  3 ° - 5  5 ° - 5  3 ° - 6  2 ° - 8  3 ° 

o2 25 ° - 2  ° -1  ° 11 ° 1 ° 5 ° 
2 c~o 0.914 1.07 1.28 0.909 1.06 1.27 

j3~ -0.239 -1.00 -1.00 -0.476 -0.884 -0.406 

Re Z 2 1.62 0.075 0.371 0.347 0.069 0.000 

Im ~-2o 1.26 1.00 0.929 1.41 1.06 1.00 

/~ -0.174 -0.140 0.015 -0.120 -0.095 0.040 

equat ions  leads to a well  def ined scattering length a 0 = 0.15 -+ 0.07. I t  appears that  

this result  fol lows f rom their  strict use o f  the Berkeley band o f  phase shifts d o w n  

to 500 MeV [10, 44].  This is part ly i l lustrated in fig. 4, where the first data  poin t  
favours our  solut ion 2. However  our  three solutions have a reasonable X 2 when 

compared  to the full data  set and we feel it wou ld  be unwise to rely heavily on the 

phase near  500 MeV to select a solut ion o f  the Weinberg type.  
In our  solut ions,  the I = 2 s-wave phase shift 8 02 is strongly correlated to the 

behaviour  o f  5 0. It  is clear that  measuring 8 02 wi th  good accuracy,  i.e. a true error 
o f  -+ 3 °,  in the region f rom 450 MeV to 900 MeV, could constrain the 7rzr ampli tude 

appreciably.  However  it should be remarked that  the 8 02 phase depends  on b o t h  a 0 

and on the 8 0 used in the fit (see figs. 3 - 5 ) .  The  downward  displacement  o f  the 
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Fig. 6. Behaviour of the d- and f-wave amplitudes below 1 GeV for the three Saclay solutions 
of fig. 3. 

universal curve in passing from the Saclay to the CM-EM 1 phase results in a lar~er 
(numerically) 6 2 phase. In any case the present experimental information on 6~ is 
not yet precise enough to discriminate between our band of solutions. 

4.3. Higher partial waves 

The d- and f- partial-wave amplitudes are calculated as described in subsect. 2.5. 
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Table 6 
Behaviour of the d- and f-wave phase shifts below i GeV. Errors include the effect of all experi- 
mental and theoretical uncertainties 

M~rTr (MeV) (5 0 8 ~ 6 31 

400 0 ° ,07 +- 0 ° .01 0 ° .00 +- 0 ° .01 0 ° .002 -+ 0 ° .001 
600 0 ° . 9  +0 ° . I  - 0  ° .1 +0 °.1 0 °.04 -+0 °.02 
800 3 ° .5 +-0 ° .5 - 0  ° .5 +-0 ° .2  0 ° .2  -+0 °.1 

1000 11 ° + 2 ° -1  ° .0  -+0 °.6 0 ° .8  -+0 ° .2  

and we plot the quantities 

K i ( s ) _  N/~ 2q2l+1 tan 61 (4.7) 

in fig. 6 for our Saclay solutiofis. The Kit(s) tend to the scattering lengthsa~ at 
threshold and we see that the scattering length approximation,  Kit(s) = ~ ,  can be 
grossly violated for energies below 1 GeV. We note that the isoscalar d-wave scat- 
tering length a 0 has a rather stable value within our set of  solutions - it is dominated 
by the P and the "e" .  The I = 2 d-wave scattering length is comparatively small 
( p - " e "  cancellation) while the f-wave scattering length a~ is dominated by  the thresh- 
old singularities. The behaviour o f  the d- and f-waves are similar to fig. 6 for our 
solutions fi t ted to the Berkeley or CM-EM1 phases. Since the values are quite stable 
we tabulate the d- and f-wave phase shifts for the mass region below 1 GeV in table 6. 
The errors allow for the spread between the three solutions and uncertainties in the 
experimental  phases 60 , the driving terms and other input parameters such as the 
elastic partial decay width o f  the f0 resonance. The values o f  these higher wave 
phases at 1 GeV are in good agreement with experimental  values [20, 21, 22, 35]. 
Below 1 GeV the d- and f-waves are more accurately defined by  our phenomenelog- 
ical determinat ion than by experiment at the present level o f  statistics. We therefore 
suggest that in future 7rlr phase-shift analyses below 1 GeV, the phenomenological 
d- and f-wave phases of  table 6 should be used as input (checking a posteriori that 
they agree with the data). In particular we remark that  the CM-EM1 d-wave phase 
shifts [22] appear to be too large below 800 MeV. 

4. 4. The Regge p residue function 

We have evaluated the asymptot ic  contr ibution L.. (defined in subsect. 2.7) to 
the Olsson sum rule for our three sets of  solutions and the values obtained are 
shown in fig. 7. The error band associated with each of  these curves, due to all the 
uncertainties in the input,  corresponds to AL~. = + 0.05. The contributions of  the 
f0 resonance and Regge p exchange with the Lovelace-Vaneziano [30] residue func- 
tion were evaluated using eq. (2.3 I)  and are indicated by dashed lines in fig. 7. We 
see that our solutions tend to favour an effective Regge p exchange residue function 



J.L. Basdevant et al., ~rTr amplitudes 437 

L ~  

0.3 

o.~ -EM 1 

BK LY 

0.1: 

f ,o 

I 1 I I I I I ,~  
-0.1 0 0.1 0.2 0.3 0 .4  0.5 0.6 0 

a o 

Fig. 7. Asymptotic contributions L** to the Olsson sum rule. The dashed lines indicate the 
contributions from the fo resonance and Regge p exchange with the Lovelaee-Veneziano residue 
function, Vp. 

at t = 0 somewhat smaller than the Lovelace-Veneziano value. In particular our 
Saclay and Berkeley solutions suggest that the Veneziano B 4 model  predicts high 
energy amplitudes too large by about  a factor of  two +, and that the zero of  the 
effective residue function is nearer the geometrical absorption value, t = - 0 . 2  GeV 2, 
than the nonsense value, t = - 0 . 6  GeV 2 [37]. 

4.5. Future  selection between solutions using the zr+ rr - Y~I m o m e n t  

Our isoscalar s-wave amplitudes for a particular set of experimental  phase shifts 
above 500 MeV differ mostly below the rho (see figs. 3 - 5 )  and have an uncertainty 
of  between -+ 5 ° and -+ 10 ° at 500 MeV. More accurate information on 6 0 near 
500 MeV and below would be a great help in further restricting our set of  lrTr ampli- 
tudes, as exemplified in the work of  Pennington and Protopopescu [10, 44] dis- 
cussed above. The rho meson no longer dominates the amplitude in this mass ;egion 
and it is more dificult to extract  reliable s- and p-wave phase shifts from 7r+Tr - pro- 
duction experiments.  Partial information may still be accessible however, in the 

+ A similar phenomenon has been found in other circumstances [45]. 
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Fig. 8. Normalized extrapolated < Y~I> moment  for the Saclay data compared to the solutions 
of  fig. 3. 

form of the Y~I moment of the 7rlr angular distribution. In fact the normalized 
( Y~I > moments, which are proportional to the backward forward asymmetry, have 
been published for the Saclay and Berkeley experiments [20, 21 ]. This quantity 
has been calculated for all our solutions and is shown in figs. 8 - 9  together with 
the experimental values. There is a tendency for the large values o fa  0 compared 
to Weinberg (i.e. a 0/> 0.3) to be favoured. However we would not rule out any of 
our solutions on this basis at present, but only point out that reliable experimental 
information on this quantity could do so. 
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Fig. 9. Normalized extrapolated ~ Y~z> moment for the Berkeley data compared to the solutions 
of  fig. 4. 

There are theoretical grounds [ 11,22] for believing that the unnormalized 
moment, N (Y~I), is a cleaner quantity to extrapolate for the reaction rrN ~ rrrrN. 
In the CM-EM 1 phase-shift analysis it was found convenient to use the combination 
N ( Y~I ) - V ~  N ( Y~3 ), which removes the main d-wave effects and essentially extra- 
polates to the quantity 

(~Y~I) ae+l- = 4 ~ 2  sin6~ (2 sin60 cos (60-61)+sin~2 cos(~2-8~)).  (4.8) 
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Fig. 10. Unnormalized <Y°> a+l - moment, defined in eq. (4.8), computed from the CM-EM1 
(and 2) phases and compared to the solutions of fig. 5. 

We have evaluated this quantity for the CM-EM phase shifts and indeed it is found 
to be invariant in going from their (favoured) solution 1 to their solution 2 phase 
shifts. In the absence o f  the original data on the moments we have treated these 
values as data points in fig. 10, where we compare them to the predictions from our 
three solutions of  fig. 5. None of  our solutions is able to reproduce the behaviour 
of  this quantity in the region below 600 MeV and we feel this is a serious anomaly 
which should be investigated further. This is reflected in the low-energy structure 
of  the p-wave amplitude from the CERN analysis shown in fig. 11 which, similarly, 
we are unable to reconcile with the Roy equations. The CM-EM solution 2 p-wave 
phase shifts [22] are also shown in fig. 11 and are even more difficult to reproduce. 

We should like to emphasize again that the Roy equations are able to predict d 
and higher waves accurately below 1 GeV. From our point of  view there is, thefore, 
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Fig. 11. The quantity (2qa/x/~) cot/5 ~ evaluated for the CM-EM1 • and CM-EM solution 2 
p-wave phase shifts [22]. The curves correspond to the three solutions of fig. 5. 

no advantage in working with (Y~I) - V ~  (Y~3) rather than with (Y~I) itself. In fact 
values of  the unnormalized Y~I moment  could be just as useful input into our analysis 
as the isoscalar s-wave phase shifts. Since (F~I) o~l- is more directly accessible ex- 
perimentally, it could replace 5 0 as i tem (f) in our list o f  assumed phenomenoligical 
information. We therefore urge experimentalists to publish values of  this quantity,  
obtained by extrapolation or amplitude analysis. A direct 7rlr phase-shift analysis of  
these data could then be made within our approach, in which other moments  could 
be predicted and checked a posteriori or used as additional phenomenological in- 
put. 

4. 7. In format ion  on mr scattering f r o m  other  sources 

We conclude with some remarks about other sources of  information on low 
energy mr scattering. The I = 2 s-wave phase shift ~ 02 is correlated to the behaviour 
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Fig. 12. Recent Ke4 results compared to the three Berkeley solutions of fig. 4. Data points 
from Beier et al. [46] ~ and from Zylbersztein et al. [46]: ~ x 2 points, ~ maximum likelihood, 
i Pals Treiman method. 

of 50 as shown in figs. 3-5 .  As mentioned above, the measurement of~ 2 with good 
accuracy in ~r+Tr + or 7r-zr- production experiments would help to constrain the zrTr 
amplitude and, in each case, would select between the solutions with the small and 
large values of a 0. However the dispersion in the present I = 2 data [1,42] encom- 
passes all of our solutions. 

The most direct experimental method of selecting between our solutions in favour 
of a definite s-wave scattering length is, of course, from Ke4 measurements. In fig.12 
we compare our three Berkeley solutions from fig. 5 with the most recent Ke4 re- 
sults [46]. The curves for a given value of a 0 are very similar for our Saclay and 
CM-EM1 solutions, due to the correlation we find between a 0 and the slope b O, It 
appears that a negative value for a ° can be ruled out but, otherwise any value within 
the range (4.6) is allowed by present measurements. Clearly a more accurate Ke4 
experiment could provide a sensitive determination ofa  0. As mentioned earlier, 
future analyses of Ke4 decay should make use of the phenomenological correlation 
between a 0 and b 0 given in tables 3 and 4. 

Via analytic continuation, the amplitudes for other processes can be related to 
the 7rTr phase shifts. In particular the behaviour of the elastic zrN d-wave amplitude 
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close to the physical threshold is very sensitive to the value of a 0. The most detailed 
analysis [47] favours a 0 ~ 0.1 and claims that the errors are small enough to rule 
out a scattering length as large as 0.6. 
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A p p e n d i x  A.  N o t a t i o n  

We use partial-wave amplitudes f I (s)  for orbital angular momentum l and isospin 
L These are related to the real phase shift 6[(s) and elasticity coefficient rff(s) 
by 

I 2i6//(s) 
f l ( s )  = (rl I (s) e - 1)/2 ip(s) ,  (A.1) 

where p(s) = X/(s-4) /s  (we use units h = c = rnTr = I). 
Scattering lengths a I are defined as 

a I = lim f l ( s ) /q2 l ,  (A.2) 

s~ 4 + 

where q is the c.m. three-momentum, 

q2 = ¼(s - 4) .  (A.3) 

For s-waves we define the slopes b 0 and b 2 as 

b0/= lim (Re f l o ( S ) - a I ) / q  2 . (A.4) 
s-* 4 + 

For the detailed form of the Roy equations we refer to BGN [7]. 
Taking the limit as s -~ 4 + of these equations one gets identically 

- ( a 0 ) 2  1 6 4 f  ds' I A O ( s , , O ) _ ( a O ) 2 ~ 4 1  b 0 =  I 0 2 v + _ _  
a ( 2 a 0 - 5 a 0 ) - 4  ~ ,r s,(s,_4)2 

16 ds' ÷ J . [~A°(s',O)-A~(s',O)+{A2(s',O)], (A.5) 
rr 4 s '2 (s ' -4)  
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b2=-~(2aO-5a2)-4(a2)2+16;Tr 7r s'(s '-4) 2 d s '  [A2(s,,O)_(a2)2~s~,4 ] 

+ 1 6 7  ds' [~AO(s,,O)+½Al(s,,O)+~AZ(s,,O)] " (A.6) 
7r ~ s,2(s,_4) 

Here AI(s,t) is the absorptive part of the invariant amplitude F 1 (s,t) (cf. sect. 2). 
We also make use of the following sum rules based on unsubtracted forward 

dispersion relations: 

L - 2.o _ 5a0~ =4. / _ _  

(Olsson's sum rule), 

1 6 ;  

4 

ds' 

s'(s'-4) 
[2AO(s',O) + 3A l(s',0) - 5A2(s',0)] , (A.7) 

2s'--4 A 1 (s',0) 
s'2(s'-4) 2 

+---2 _o~ff ds__~' [2A0(s,,0 ) + 3A l(s',0) - 5A2(s',0)] (A.8) 
97r 4 s'2 

Taking the limit s -~ 4 + in the Roy equation for f l ( s )  one obtains Wander's sum rule 

2aO-5a 2 18a~-  96 f d s ,  2s ' -4  A I(s,,0 ) 
7r 4 s'2(s'--4) 2 

+ 16 ogj d s '  [2A0(s,,0 ) + 3A l(s',0) - 5A2(s',O)], (A.9) 
rr 4 s'2(s'-4) 

which of course is also a consequence of eqs. (A.7) and (A.8). 

Appendix B. Parametrization of s- and p-wave nTr ampfitudes 

In this appendix we describe in some detail the parametrizations adopted for s- 
and p-waves (f°o(S),f~(s),f2(s)). 

We shall primarily be working with the S-matrix element 

1 2/8//( s ) 
s~(s) = nl (s) e 

= 1 + 2i I f i ~  r[(s) 

= 1 - 2 V - ~  -~ f [ ( s ) .  (B. 1) 
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We want  to write S 1 as a rational function of  a suitably chosen variable z which 

will automatical ly introduce the physically relevant thresholds. The advantages of  
this scheme over the more familiar K-matr ix formalism are (i) we can explicit ly 
ensure that no physical sheet singularities occur; (ii) the parameters are directly 
related to the location of  singularities and thus for the most part have a simple 
physical significance o f  their own and (iii) we are able to treat the important  
l = 1 = 0 7rrr ~ KK. inelasticity without  having to parametrize (K-) matrix elements 
having to do with the reactions rrrr -+ KK and KK -+ KK., in which we have no direct 
interest here. 

The variable z will differ for the three amplitudes above for reasons which will 
become clear below. We therefore treat the parametrization of  each amplitude indi- 
vidually. 

B. 1. Parametrization o f  ~oo(S ) 

Here the physically relevant thresholds are s = 0, s = 4 a n d  s = 4m 2. The variable 
z which we chose will map the q-plane cut along ( - %  -q l )  (ql, ~o), (i, i °°) and 
( - i %  - i )  onto the unit circle Izl < 1 such that 

q, --,g4 - l ,  

q e(-qi ,  q i ) + z  e ( - 1 ,  1) ,  

1 st sheet (Im q > 0) + Izl < 1 , Im z > 0 ,  

2 nd sheet (Ira q < O) -+ Izl < I , Im z < 0 .  (B.2) 

The transformation q ~ z is given by 

q2 = R2z2 

(Z2 Z2)(Z2_Z~2) ' 

Z O=e i ° ,  t a n O = l / q  I ,  0 ~ 1 6 ° . 3 ,  
2qi 

R = ~ 1 .92.  (B.3) 
m K 

Fig. 13 is the z-plane image of  the four-sheeted s-plane Riemann surface. The circle 
and the real axis divide the z-plane into four domains which are the images respec- 
tively of  the four sheets of  s. 

From eq. (B.3) it follows that the four complex numbers z i, i = 1,2,3,4 with 

z 2 = - z  1 , z 3 = - z l l  , z 4 = z l l  = - z  3 , IZll < 1, I m z  1 > 0 ,  (B.4) 

will be the images o f  the same complex number in the s-plane, however, pertaining 
to sheet number L 
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® Iz 
i 

s =Lrn K - i  C . . ~ ~  s =& l~,~s =Lm K + i(: 
- 1 / _  ~~I -ReZ 

- i  

® 

Fig. 13. z-plane image pertaining to eq. (B.3) of the four-sheeted Riemann surface for s. 

Time-reversal invariance, elastic unitarity (we assume T00(s) - 1 on 4 ~<s ~ m~ 
in the parametrization) and analyticity requires the S-matrix element (B.1) to satisfy 

isO(z l, , 

sO(_z) = [sOo(~)] - 1  , 

S O holomorphic in Izl < 1 , Im z > 0 ,  

S O meromorphic in Izl < 1 . (B.5) 

These will be satisfied by the following rational parametrization 

S°(z) = oe(z;z ) oe(z; Zs,) 

X i+z i -aOz  i -~Oz3  

i-----z i+aO------z i + ~Oz3 c/~(z;2-O)' (B.6) 

where 

c~ (x ;y )  - ( x - y * ) ( x + y )  (B.7) 
( x - y ) ( x + y * )  

We first outline the mathematical significance of  the various factors in eq. (B.6). 
The first factor, ~ ( z ; z e )  in eq. (B.6) introduces a pole at z = z e corresponding 

to an e-meson of  mass m e and width F e such that z e is the image of  the point s e 
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on the second sheet, where 

s = (rn c - l i  vo) 2 

The factor CR(z ;Zs, ) likewise describes an S* resonance. 
The third factor in eq. (B.6) introduces a pole at z = i corresponding to the 

1/x/~singularity at s = 0 (cf. eq. (B.1)). 
The fourth factor in eq. (B.6) introduces a zero in SO(s) in the range 0 ~< s ~< 4 

on either the 1st or 3rd sheet (according to whether a0~> 1 or a 0 < 1) and a cor- 
responding pole on the 2nd (virtual bound state) or the 4th sheet. The presence 
of  this factor is required for any reasonable low-energy behaviour of  f °(s). From 
eq. (B.1) we see that the position of  this zero will be given by the equation 

1 ~ (B.8) i00(s)  = 

which will always have a solution on - 2  < X/s < 2 (x/s < 0 on the 3rd sheet, 
x/s > 0 on the 1st sheet). The position of  the zero we calculate approximately in 
terms of  the low-energy parameters a ° and b °. From the definition eq. (A.4) and 
unitarity we get to order (q2) on 0 ~< s ~< 4 

2 0 0 ' (a°) 2 + q [a0b 0 + ½(a00)4- l(a0)2]) (B.9)  0(s) _-a0 + _ 0 

For all our solutions the corresponding solution to eq. (B.8) has Ix/sl ~< 1, We there- 
fore expect the approximation (B.9) to be adequate in view of  the crossing con- 
straint 

3 
Imf0(s )  = O(s2-) for s ~ 0 -  . 

The remaining parameters ~0 and Re ~-0 0, Im •0 in the last two factors in eq. (B.6) 
are chosen so as to reproduce the behaviour 

Re fO(s)  = a 0 + bOq 2 + O(q4) , 

..+ + 0 as s 4 , for the given values of  z e, Zs, and a 0. Whenever this is possible in more 
than one way, that solution (in terms of/3 0, Re 2 -0 and Im ~-0)is chosen which 
corresponds to the most distant singularities in the z-plane (cf. the discussion below). 

We next comment on the physical significance of  the parameters as given in 
tables 1 and 5. 

B. 1.1. The S*  resonance. The experimental structure which identifies the dynamical 
properties of  the S* is the peculiar behaviour of  60 and r/0: below the KK threshold 
(z = 1) 60 increases slowly to 60 = 90 ° in the 900 meV region; then on a short 
interval just before the KK threshold 60 increases rapidly to 180°; above s = 4 m2K 
~70 exhibits a corresponding rapid drop from 1 to a minimum value of  0 .3-0 .5 .  The 
choice of  parametrization (i.e. the choice of  z) is heavily biased in favour of  func- 
tions with important square-root branch points at s = 4 m2K : SO(z) will be regular 
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at z = 1 and (d/dz) SO(z)lz= 1 will be proportional to the strength of  the cusp-effect. 
One can still, within the present parametrization, describe a fully elastic f~0, By eqs. 
(B.4) this requires the singularity structure to be invariant under z ~ z -1 , however. 
For an approximately elasticf0(s) we would thus be forced to have, besides the 

t t 
factors C~(Z;Ze) and C~(Z;Zs, ) in eq. (B.6), additional factors C~(z;ze) and q~(Z;Zs, ) 
with 

t ~ Z - 1  ~ ~ Z s 1  
Ze e ' ZS* 

However, the contribution of a term cR (z; Zr) to the phase shift is 

- 2 z  Im z r 
5 (z; Zr) = A tan (B. 10) 

IZrl2- z 2 

Thus we see that the two factors C~(z; ze) C~(Z;Zs, ) (with values of  z e and Zs, as given 
in tables 1 and 5) will already reproduce the qualitative behaviour of  60 as summa- 
rized above. In particular the agreement would be completely spoiled if we had a 
factor C~(z; z~,)  with z~, -~ zg, l :  the rapid rise in 5 0 would then disappear. We 
thus conclude that the presence of  this rapid rise and the fact that it takes place 
over the interval from 90 ° to 180 ° is strong evidence for an interpretation of  the 
S* as a 2nd sheet pole not accompanied by a 3rd sheet pole, as would be the case 
for a less inelastic object +. We have argued that near z = 1 we must have C'R (Z;Zs,) -~ 1 
This requires 

t t 
IIm Zs, I ~ IRe Zs, - I I .  

t 
In practice we encounter no difficulty in fitting the data without an C~(z; Zs, ) 
term at all, corresponding to Im z~, = 0. 

We conclude that there is stron~ experimental evidence for the S* as a 2nd sheet 
pole with a mass very close to 4 m~(. The width is given essentially by the length of  
the energy interval over which 80 increases from 135 ° to 180 ° (say) and/or the 
length of  the energy interval over which ~0 drops to its minimum. This parameter 
is much harder to get from present experiments than the mass. The data ofref .  [22] 
thus require a value of  l-'s, an order of  magnitude smaller than that given in table 1. 
In principle, however, r ' s ,  must be considered an experimentally well defined param- 
eter. 

B.1.2. The e-resonance. The e is a much more elusive object than the S* and thus 
our published values for m e and Pe in table 5 need some comments. 

We first point out that the set of  functions 

{ii -az------~n+ az n ' l a l < l  , n > 0 odd integer} 

0 
+ I f  o n e  w a n t s  to  desc r ibe  the  o b s e r v e d  d r o p  in n o in c o n n e c t i o n  w i t h  a b e h a v i o u r  o f  ~ o l ike 

in the so called up-solution above 800 MeV, one must in fact use a factor R(z; z~,). That 
was done in ref. [3]. In this work, however, we only consider the implications of the "down- 
solution" above mp (cf. ref. [21]). 



J.L. Basdevan t  e t  al., 7rTr ampl i tudes  449 

is a complete set of  functions on the space of elastic S-matrices defined on - 1  ~< z ~< 1 
(i.e. on 4 ~< s ~< 4 m2) .  This means that we can fit any conceivable experimental 
phase shift with arbitrary accuracy using functions S O ( z )  having singularities only 
for Izl > 1. That again implies that even a seemingly clearly resonating phase shift 
(like 6 ~, see below) can be fitted with arbitrary accuracy without using a second 
sheet resonance pole [48]. This observation implies that it is not only very difficult 
to determine the e-pole position but the problem of  finding the singularities corre- 
sponding to a set of  experimental phase shifts with finite accuracy (however good) 
does not even in principle have a unique solution. This statement is true for any 
parametrization: it is a feature known as instability in theories of  analytic extra- 
polation [49]. One therefore needs to reformulate the problem (which was "im- 
properly posed").  We do this by assuming first that on the second sheet at most 3 
poles need be considered. These 3 poles are the ones pertaining to z e, Zs. and (for 
sufficiently large values of  a 0 - cf. table 5) a virtual bound state coming from the 
fourth factor in eq. (B.6). Second, we require that the contribution to 6 0 coining 
from singularities outside the circle Izl = 1 is "as smooth as possible" inside Izl = 1. 
In the present work we shall make no at tempt  to formalize this last principle, but 
from results on extrapolation theory pertaining to analogous situations [49] we 
expect that, once such a ~rinciple has been sharply defined, one can prove that as 
experimental errors on ~ go to zero (i) the 3 poles on the 2nd sheet will converge 
to unique and well defined positions provided the assumption that at most 3 poles 
exist on the 2nd sheet is correct and (ii) the contribution to S O coming from singu- 
larities outside Izl = 1 will converge to a well defined function inside Izl = 1, whereas 
the actual singularity positions outside Izl = 1 are not expected to have any signifi- 
cance and no convergence of  these can be expected since the approximation scheme 
neglects the presence of  branch-point singularities on Izl = 1. 

In the present work we have imposed smoothness of  the contribution of back- 
ground singularities (those with Izl ~> 1) (a) by limiting their number and (b) by 
requiring them to be as far away as possible (cf. the discussion of  the parameters 
130, Re ~-0 and Im 2-°). However crude this treatment of  the background singulari- 
ties may be, it represents a refinement over our methods u~ed for ref. [2]. According- 
ly we feel that our values for Pe in that paper may have been overestimated (cf. 
table 5 for our new values). 

The disentangeling of  the contribution from the three 2nd sheet poles is still a 
serious one. For the S* we feel the situation is rather well defined as explained 
above, however, and for the remaining two we are effectively helped by the Roy- 
eqs. in that, once we chose a particular value o f a  0, these eqs. predict the corre- 
sponding value of b 0 and therefore the position of the pole in the 4th factor in 
eq. (B.6) as explained above. Thereby the ambiguity in the e-pole position is reduced. 

We thus feel that our published e-pole positions represent a little more than the 
results of  an arbitrary fit, but we strongly emphasize that, due to the inherent dif- 
ficulties in its definition, the actual numbers should be treated with great care. The 
test o f  our scheme will be to see whether z e as we have defined it will converge to a 
unique position as experimental errors decrease with time. 
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B.2. Parametrization o f f , ( s )  

There are two essential differences compared to the parametrization of f0(s ) :  
(i) near s = 4 m2K 

f l ( s )  =~l(S) + O((s - 4 m 2 ) ~ ) ,  (B.13) 

where f ' ]  (s) is regular at s = 4 m2K ; 
(ii) near s = 4 

61 ~ alq3 . 

Condition (i) is satisfied automatically by writing S1 as a (rational) function of 
the new variable 

z t -- ¼z(3 - z 2 ) ,  (B.14) 

where z is given by eq. (B.3). Then the condition (B.13) just means that S] (Zl )  is 
_ 1 (the image o f s  = 4 m2K). regular at z 1 - 2- 

Condition (ii) is satisfied by formally t r ea t ingf l  as an s-wave with zero scattering 
length and slope = a] .  

Simplifying a little the low energy treatment as compared to the case o f f  0 we 
then write 

(i+z l )(i-a~ Z l )( i-~] z ~ ) 

SI (Z l )  = Q~(Zl;Zo)(i_zl)(i+alZl)(i+~Iz~) 

X C~(zX;zo, ) C~(Zl;Z'o, ) . (B.15) 

Here z o is the image in the z 1 plane of  the point 

s = (mp - ½i Fo)2 

on the second sheet. 
The two last factors have been included in order to be able to vary the detailed 

behaviour of  61 in the 9 0 0 - 1 0 0 0  MeV region as required by the Roy equations. 
We found it natural to represent these background-terms by an inelastic p '  (cf. 
table 1), but by no means do we claim to have predicted a p '  by the Roy equations. 

B. 3. Parametrization of  f2 (s) 

In this amplitude no KK. threshold is present and, for simplicity, we take f2(s) 
to be elastic from threshold to s = oo. That is, we take S 2 to be a rational function of  
the new variable z 2 given by 

q2 _ 4z2 
(B.16) 

(z 2 -- 1) 2 
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We thuse write 
• io 2 

$2(z2) =C~(z2 ;e  z01) ~ ( z 2 ; e  ) 

i + z 2 i ~2z 2 " 2 3 l - ~ o Z  2 
x .  (B.17) 

 -z2 ,++2 
(-~-Tr, 27r) (i.~. for sim- Here 01 and 02 are free real parameters in the interval 1 ± 

plicity we allow real axis poles on the left-hand cut). The parameters ot 2,/32, ~- 02 
are then fixed in terms of the scattering length a 2 and the slope b02 in complete 
analogy to what was done for fO(s) above. 
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Abstract

We analyze the Roy equations for the lowest partial waves of elastic

ππ scattering. In the first part of the paper, we review the mathematical
properties of these equations as well as their phenomenological applica-

tions. In particular, the experimental situation concerning the contribu-
tions from intermediate energies and the evaluation of the driving terms

are discussed in detail. We then demonstrate that the two S-wave scatter-
ing lengths a0

0 and a2
0 are the essential parameters in the low energy region:

Once these are known, the available experimental information determines
the behaviour near threshold to within remarkably small uncertainties. An
explicit numerical representation for the energy dependence of the S- and

P -waves is given and it is shown that the threshold parameters of the D-
and F -waves are also fixed very sharply in terms of a0

0 and a2
0. In agree-

ment with earlier work, which is reviewed in some detail, we find that the
Roy equations admit physically acceptable solutions only within a band of

the (a0
0,a2

0) plane. We show that the data on the reactions e+e− → π π and
τ → π π ν reduce the width of this band quite significantly. Furthermore,

we discuss the relevance of the decay K → π π e ν in restricting the allowed
range of a0

0, preparing the grounds for an analysis of the forthcoming pre-

cision data on this decay and on pionic atoms. We expect these to reduce
the uncertainties in the two basic low energy parameters very substantially,
so that a meaningful test of the chiral perturbation theory predictions will

become possible.

Pacs: 11.30.Rd, 11.55.Fv, 11.80.Et, 13.75.Lb
Keywords: Roy equations, Dispersion relations, Partial wave analysis,

Meson-meson interactions, Pion-pion scattering, Chiral symmetries
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1 Introduction

The present paper deals with the properties of the ππ scattering amplitude in
the low energy region. Our analysis relies on a set of dispersion relations for the
partial wave amplitudes due to Roy [1]. These equations involve two subtraction
constants, which may be identified with the S-wave scattering lengths, a0

0 and a2
0.

We demonstrate that the subtraction constants represent the essential parameters
in the low energy region – once these are known, the Roy equations allow us
to calculate the partial waves in terms of the available data, to within small
uncertainties. Given the strong dominance of the two S-waves and of the P -wave,
it makes sense to solve the equations only for these, using experimental as well as
theoretical information to determine the contributions from higher energies and
from the higher partial waves. More specifically, we solve the relevant integral
equations on the interval 2Mπ <

√
s < 0.8 GeV. One of the main results of this

work is an accurate numerical representation of the S- and P -waves for a given
pair of scattering lengths a0

0 and a2
0.

Before describing the outline of the present paper, we review previous work
concerning the Roy equations. Roy’s representation [1] for the partial wave am-
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plitudes tIl of elastic ππ scattering reads

tI` (s) = kI` (s) +
2∑

I ′=0

∞∑

`′=0

∫ ∞

4M2
π

ds′KII ′
``′ (s, s

′) Im tI
′
`′ (s

′) , (1.1)

where I and ` denote isospin and angular momentum, respectively and kI` (s) is
the partial wave projection of the subtraction term. It shows up only in the S-
and P -waves,

kI` (s) = aI0 δ
0
` +

s− 4M2
π

4M2
π

(2a0
0 − 5a2

0)
(

1

3
δI0 δ

0
` +

1

18
δI1 δ

1
` −

1

6
δI2 δ

0
`

)
. (1.2)

The kernels KII ′
``′ (s, s

′) are explicitly known functions (see appendix A). They
contain a diagonal, singular Cauchy kernel that generates the right hand cut
in the partial wave amplitudes, as well as a logarithmically singular piece that
accounts for the left hand cut. The validity of these equations has rigorously
been established on the interval − 4M 2

π < s < 60M2
π .

The relations (1.1) are consequences of the analyticity properties of the ππ
scattering amplitude, of the Froissart bound and of crossing symmetry. Com-
bined with unitarity, the Roy equations amount to an infinite system of coupled,
singular integral equations for the phase shifts. The integration is split into a
low energy interval 4M 2

π < s′ < s0 and a remainder, s0 < s′ < ∞. We refer to
s0 as the matching point, which is chosen somewhere in the range where the Roy
equations are valid. The two S-wave scattering lengths, the elasticity parameters
below the matching point and the imaginary parts above that point are treated
as an externally assigned input. The mathematical problem consists in solving
Roy’s integral equations with this input.

Soon after the original article of Roy [1] had appeared, extensive phenomeno-
logical applications were performed [2]–[8], resulting in a detailed analysis and
exploitation of the then available experimental data on ππ scattering. For a re-
cent review of those results, we refer the reader to the article by Morgan and
Pennington [9]. Parallel to these phenomenological applications, the very struc-
ture of the Roy equations was investigated. In [11], a family of partial wave
equations was derived, on the basis of manifestly crossing symmetric dispersion
relations in the variables s t+ t u+ u s and s t u. Each set in this family is valid
in an interval s0 < s < s1, and the union of these intervals covers the domain
−28M2

π ≤ Re s ≤ 125.3M2
π (for a recent application of these dispersion relations,

see [12]). Using hyperbolae in the plane of the above variables, Auberson and
Epele [13] proved the existence of partial wave equations up to Re s = 165M 2

π .
Furthermore, the manifold of solutions of Roy’s equations was investigated, in
the single channel [14]–[16] as well as in the coupled channel case [17]. In the
late seventies, Pool [18] provided a proof that the original, infinite set of integral
equations does have at least one solution for

√
s0 < 4.8Mπ , provided that the

driving terms are not too large, see also [19]. Heemskerk and Pool also examined
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numerically the solutions of the Roy equations, both by solving the N equation
[19] and by using an iterative method [20].

It emerged from these investigations that – for a given input of S-wave scat-
tering lengths, elasticity parameters and imaginary parts – there are in general
many possible solutions to the Roy equations. This non-uniqueness is due to the
singular Cauchy kernel on the right hand side of (1.1). In order to investigate the
uniqueness properties of the Roy system, one may – in a first step – keep only
this part of the kernels, so that the integral equations decouple: one is left with a
single channel problem, that is a single partial wave, which, moreover, does not
have a left hand cut. This mathematical problem was examined by Pomponiu
and Wanders, who also studied the effects due to the presence of a left hand cut
[14]. Investigating the infinitesimal neighbourhood of a given solution, they found
that the multiplicity of the solution increases by one whenever the value of the
phase shift at the matching point goes through a multiple of π/2. Note that the
situation for the usual partial wave equation is different: There, the number of
parameters in general increases by two whenever the phase shift at infinity passes
through a positive integer multiple of π, see for instance [21, 22] and references
cited therein.

After 1980, interest in the Roy equations waned, until recently. For instance,
in refs. [23] these equations are used to analyze the threshold parameters for
the higher partial waves, relying on the approach of Basdevant, Froggatt and
Petersen [5, 6]. The uncertainties in the values of a0

0 and a2
0 are reexamined in

refs. [24]. In recent years, it has become increasingly clear, however, that a new
analysis of the ππ scattering amplitude at low energies is urgently needed. New
Ke4 experiments and a measurement of the combination a0

0 − a2
0 based on the

decay of pionic atoms are under way [25]–[29]. It is expected that these will
significantly reduce the uncertainties inherent in the data underlying previous
Roy equation studies, provided the structure of these equations can be brought
under firm control. For this reason, the one-channel problem has been revisited
in great detail in a recent publication [30], while the role of the input in Roy’s
equations is discussed in ref. [31].

The main reason for performing an improved determination of the ππ scat-
tering amplitude is that this will allow us to test one of the basic properties of
QCD, namely the occurrence of an approximate, spontaneously broken symme-
try: The symmetry leads to a sharp prediction for the two S-wave scattering
lengths [32]–[40]. The prediction relies on the standard hypothesis, according to
which the quark condensate is the leading order parameter of the spontaneously
broken symmetry. Hence an accurate test of the prediction would allow us to ver-
ify or falsify that hypothesis [34]. First steps in this program have already been
performed [35]–[39]. However, in the present paper, we do not discuss this issue.
We follow the phenomenological path and ignore the constraints imposed by chi-
ral symmetry altogether, in order not to bias the data analysis with theoretical
prejudice. In a future publication, we intend to match the chiral perturbation
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theory representation of the scattering amplitude to two loops [40] with the phe-
nomenological one obtained in the present work.

Finally, we describe the content of the present paper. Our notation is specified
in section 2. Sections 3 and 4 contain a discussion of the background amplitude
and of the driving terms, which account for the contributions from the higher
partial waves and from the high-energy region. As is recalled in section 5, uni-
tarity leads to a set of three singular integral equations for the two S-waves and
for the P -wave. The uniqueness properties of the solutions to these equations are
discussed in section 6, while section 7 contains a description of the experimental
input used for energies between 0.8 and 2 GeV. In particular we also discuss
the information concerning the P -wave phase shift, obtained on the basis of the
e+e− → ππ and τ → ππν data. In section 8, we describe the method used to
solve the integral equations for a given input. The resulting universal band in the
(a0

0,a
2
0) plane is discussed in section 9, where we show that, in the region below

0.8 GeV, any point in this band leads to a decent numerical solution for the three
lowest partial waves. As discussed in section 10, however, the behaviour of the
solutions above that energy is consistent with the input used for the imaginary
parts only in part of the universal band – approximately the same region of the
(a0

0,a
2
0) plane, where the Olsson sum rule is obeyed (section 11). The solutions

are compared with available experimental data in section 12, and in section 13,
we draw our conclusions concerning the allowed range of a0

0 and a2
0. The other

threshold parameters can be determined quite accurately in terms of these two.
The outcome of our numerical evaluation of the scattering lengths and effective
ranges of the lowest six partial waves as functions of a0

0 and a2
0 is given in section

14, while in section 15, we describe our results for the values of the phase shifts
relevant for K → ππ. Section 16 contains a comparison with earlier work. A
summary and concluding remarks are given in section 17.

In appendix A we describe some properties of the Roy kernels, which are
extensively used in our work. The background from the higher partial waves
and from the high energy tail of the dispersion integrals is discussed in detail
in appendix B. In particular, we show that the constraints imposed by crossing
symmetry reduce the uncertainties in the background, so that the driving terms
can be evaluated in a reliable manner. In appendix C we discuss sum rules
connected with the asymptotic behaviour of the amplitude and show that these
relate the imaginary part of the P -wave to the one of the higher partial waves,
thereby offering a sensitive test of our framework. Explicit numerical solutions of
the Roy equations are given in appendix D and, in appendix E, we recall the main
features of the well-known Lovelace-Shapiro-Veneziano model, which provides a
useful guide for the analysis of the asymptotic contributions.
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2 Scattering amplitude

We consider elastic ππ scattering in the framework of QCD and restrict our
analysis to the isospin symmetry limit, where the masses of the up and down
quarks are taken equal and the e.m. interaction is ignored1. In this case, the
scattering process is described by a single Lorentz invariant amplitude A(s, t, u),

〈πd(p4)πc(p3) out|πa(p1)πb(p2) in〉 = δfi +

(2π)4i δ4(Pf − Pi){δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t)} .

The amplitude only depends on the Mandelstam variables s, t, u, which are
constrained by s+ t+ u = 4M 2

π . Moreover, crossing symmetry implies

A(s, t, u) = A(s, u, t) .

The s-channel isospin components of the amplitude are given by

T 0(s, t) = 3A(s, t, u) +A(t, u, s) +A(u, s, t) ,

T 1(s, t) =A(t, u, s)−A(u, s, t) , (2.1)

T 2(s, t) =A(t, u, s) +A(u, s, t) .

In our normalization, the partial wave decomposition reads

T I(s, t) = 32π
∑

`

(2` + 1)P`

(
1 +

2t

s − 4M2
π

)
tI` (s) ,

tI` (s) =
1

2iσ(s)

{
ηI` (s) e

2iδI` (s) − 1
}

, (2.2)

σ(s) =

√

1− 4M2
π

s
.

The threshold parameters are the coefficients of the expansion

Re tI` (s) = q2` {aI` + q2 bI` + q4 cI` + . . .} , (2.3)

with s = 4(M2
π + q2).

The isospin amplitudes ~T = (T 0, T 1, T 2) obey fixed-t dispersion relations,
valid in the interval −28M 2

π < t < 4M2
π [41]. As shown by Roy [1], these can be

written in the form2

~T (s, t) = (4M2
π)−1 (s1 + t Cst + uCsu) ~T (4M2

π , 0) (2.4)

+
∫ ∞

4M2
π

ds′ g2(s, t, s′) Im ~T (s′, 0) +
∫ ∞

4M2
π

ds′ g3(s, t, s′) Im ~T (s′, t) .

1In our numerical work, we identify the value of Mπ with the mass of the charged pion.
2For an explicit representation of the kernels g2(s, t, s′), g3(s, t, s′) and of the crossing ma-

trices Cst, Csu, we refer to appendix A.
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The subtraction term is fixed by the S-wave scattering lengths:

~T (4M2
π , 0) = 32π (a0

0, 0, a
2
0) .

The Roy equations (1.1) represent the partial wave projections of eq. (2.4).
Since the partial wave expansion of the absorptive parts converges in the large
Lehmann–Martin ellipse, these equations are rigorously valid in the interval
−4M2

π < s < 60M2
π . If the scattering amplitude obeys Mandelstam analyti-

city, the fixed-t dispersion relations can be shown to hold for −32M 2
π < t < 4M2

π

and the Roy equations are then also valid in a larger domain: −4M 2
π < s < 68M2

π

(for a review, see [42]). In fact, as we mentioned in the introduction, the range
of validity can be extended even further [11, 13], so that Roy equations could
be used to study the behaviour of the partial waves above

√
68Mπ = 1.15 GeV,

where the uncertainties in the data are still considerable. In the following, how-
ever, we focus on the low energy region. We assume Mandelstam analyticity and
analyze the Roy equations in the interval from threshold to

s1 = 68M2
π ,

√
s1 = 1.15 GeV .

3 Background amplitude

The dispersion relation (2.4) shows that, at low energies, the scattering amplitude
is fully determined by the imaginary parts of the partial waves in the physical
region, except for the two subtraction constants a0

0, a
2
0. In view of the two sub-

tractions, the dispersion integrals converge rapidly. In the region between 0.8 and
2 GeV, the available phase shift analyses provide a rather detailed description of
the imaginary parts of the various partial waves. Our analysis of the Roy equa-
tions allows us to extend this description down to threshold. For small values of s
and t, the contributions to the dispersion integrals from the region above 2 GeV
are very small. We will rely on Regge asymptotics to estimate these. In the fol-
lowing, we split the interval of integration into a low energy part (4M 2

π ≤ s′ ≤ s2)
and a high energy tail (s2 ≤ s′ <∞), with

√
s2 = 2 GeV , s2 = 205.3M2

π .

For small values of s and t, the scattering amplitude ~T (s, t) is dominated by
the contributions from the subtraction constants and from the low energy part
of the dispersion integral over the imaginary parts of the S- and P -waves. We
denote this part of the amplitude by ~T (s, t)SP. The corresponding contribution
to the partial waves is given by

tI`(s)SP = kI` (s) +
2∑

I ′=0

1∑

`′=0

∫ s2

4M2
π

ds′KII ′
``′ (s, s

′) Im tI
′
`′ (s

′) . (3.1)
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The remainder of the partial wave amplitude,

dI` (s) =
2∑

I ′=0

∞∑

`′=2

∫ s2

4M2
π

ds′KII ′
``′ (s, s

′) Im tI
′
`′ (s

′) (3.2)

+
2∑

I ′=0

∞∑

`′=0

∫ ∞

s2
ds′KII ′

``′ (s, s
′) Im tI

′
`′ (s

′) ,

is called the driving term. It accounts for those contributions to the r.h.s. of the
Roy equations that arise from the imaginary parts of the waves with ` = 2, 3, . . .
and in addition also contains those generated by the imaginary parts of the S-
and P -waves above 2 GeV. By construction, we have

tI` (s) = tI` (s)SP + dI` (s) . (3.3)

For the scattering amplitude, the corresponding decomposition reads

~T (s, t) = ~T (s, t)SP + ~T (s, t)d . (3.4)

We refer to ~T (s, t)d as the background amplitude.
The contribution from the imaginary parts of the S- and P -waves turns out

to be crossing symmetric by itself. In this sense, crossing symmetry does not
constrain the imaginary parts of the S- and P -waves3. The symmetry can be
exhibited explicitly by representing the three components of the vector ~T (s, t)SP as
the isospin projections of a single amplitude A(s, t, u)SP that is even with respect
to the exchange of t and u. The explicit expression involves three functions of a
single variable [11, 36]:

A(s, t, u)SP = 32π
{

1
3
W 0(s) + 3

2
(s− u)W 1(t) + 3

2
(s− t)W 1(u)

+1
2
W 2(t) + 1

2
W 2(u)− 1

3
W 2(s)

}
. (3.5)

These are determined by the imaginary parts of the S- and P -waves and by the
two subtraction constants a0

0, a
2
0:

W 0(s) =
a0

0 s

4M2
π

+
s(s− 4M2

π )

π

∫ s2

4M2
π

ds′ Im t00(s
′)

s′(s′ − 4M2
π)(s′ − s) ,

W 1(s) =
s

π

∫ s2

4M2
π

ds′ Im t11(s′)

s′(s′ − 4M2
π)(s′ − s) , (3.6)

W 2(s) =
a2

0 s

4M2
π

+
s(s− 4M2

π )

π

∫ s2

4M2
π

ds′ Im t20(s
′)

s′(s′ − 4M2
π)(s′ − s) .

The representation

A(s, t, u) = A(s, t, u)SP +A(s, t, u)d (3.7)
3The asymptotic behaviour of the scattering amplitude does tie the imaginary part of the

P -wave to the contributions from the higher partial waves, see appendix C.1.
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yields a manifestly crossing symmetric decomposition of the scattering amplitude
into a leading term generated by the imaginary parts of the S- and P -waves at
energies below s2 and a background, arising from the imaginary parts of the
higher partial waves and from the high energy tail of the dispersion integrals.

4 Driving terms

In the present paper, we restrict ourselves to an analysis of the Roy equations
for the S- and P - waves, which dominate the behaviour at low energies. The
background amplitude only generates small corrections, which can be worked
out on the basis of the available experimental information. The calculation is
described in detail in appendix B. In particular, we show that crossing symmetry
implies a strong constraint on the asymptotic contributions.

The resulting numerical values for the driving terms are well described by
polynomials in s, or, equivalently, in the square of the center of mass momentum
q2 = 1

4
(s − 4M2

π ). By definition, the driving terms vanish at threshold, so that
the polynomials do not contain q-independent terms. In view of their relevance
in the evaluation of the threshold parameters, we fix the coefficients of the terms
proportional to q2 with the derivatives at threshold and also pin down the term
of order q4 in the P -wave, such that it correctly accounts for the background
contribution to the effective range of this partial wave. The remaining coefficients
of the polynomial are obtained from a fit on the interval from threshold to s1.
The explicit result reads

d0
0(s) = 0.116 q2 + 4.79 q4 − 4.09 q6 + 2.69 q8 ,

d1
1(s) = 0.00021 q2 + 0.038 q4 + 0.94 q6 − 1.21 q8 , (4.1)

d2
0(s) = 0.0447 q2 + 1.59 q4 − 6.26 q6 + 5.94 q8 ,

where q is taken in GeV units (the range 4M 2
π < s < 68M2

π corresponds to
0 < q < 0.56 GeV). The driving term of the I = 0 S-wave is larger than the
other two by an order of magnitude. It is dominated almost entirely by the
contribution from the D-wave with I = 0. In d1

1(s), the D- and F -waves nearly
cancel, so that the main contributions arise from the region above 2 GeV. The
term d2

0(s) picks up small contributions both from low energies and from the
asymptotic domain. The above polynomials are shown as full lines in fig. 1. The
shaded regions represent the uncertainties of the result, which may be represented
as dI` (s)± eI` (s), with

e0
0(s) = 0.008 q2 + 0.31 q4 − 0.33 q6 + 0.41 q8 ,

e1
1(s) = 0.002 q2 + 0.06 q4 − 0.17 q6 + 0.21 q8 , (4.2)

e2
0(s) = 0.005 q2 + 0.20 q4 − 0.32 q6 + 0.39 q8 .

Above threshold, the error bars in d0
0(s), d1

1(s) and d2
0(s) roughly correspond to

6%, 1% and 4% of d0
0(s), respectively.
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Figure 1: Driving terms versus energy in GeV. The full lines show the re-
sult of the calculation described in appendix B. The shaded regions indicate the
uncertainties associated with the input of that calculation. The dashed curves
represent the contributions from the D- and F -waves below 2 GeV.
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As far as d0
0(s) is concerned, our result roughly agrees with earlier calculations

[3, 6]. Our values for d1
1(s) and d2

0(s), however, are much smaller. The bulk of
the difference is of purely kinematic origin: The values taken for s2 are different.
While we are working with

√
s2 = 2 GeV, the values used in refs. [3] and [6] are√

53Mπ ' 1 GeV and
√

110Mπ ' 1.5 GeV, respectively. The value of s2 enters
the definition of the driving terms in eq. (3.2) as the lower limit of the integration
over the imaginary parts of the S- and P -waves. We have checked that, once this
difference in the range of integration is accounted for, the driving terms given
in these references are consistent with the above representation. Note however,
that our uncertainties are considerably smaller, and we do rely on this accuracy
in the following. It then matters that not only the range of integration, but also
the integrands used in [3, 6] differ from ours: In these references, it is assumed
that, above the value taken for s2, the behaviour of the S- and P -wave imaginary
parts is adequately described by a Regge representation.

The difference between such a picture and our representation for the back-
ground amplitude is best illustrated with the simple model used in the early
literature, where the asymptotic region is described by a Pomeron term with
σtot = 20 mb and a contribution from the ρ -f -trajectory, taken from the Lovelace-
Shapiro-Veneziano model (appendix E). As discussed in detail in appendix B.4,
the assumption that an asymptotic behaviour of this type sets in early is in con-
flict with crossing symmetry [43]. In particular, the model overestimates the
contribution to the driving terms from the region above 1.5 GeV, roughly by a
factor of two. Either the value of σtot or the residue of the leading Regge trajec-
tory or both must be reduced in order for the model not to violate the sum rule
(B.6). The manner in which the asymptotic contribution is split into one from
the Pomeron and one from the leading Regge trajectory is not crucial. For any
reasonable partition that obeys the sum rule (B.6), the outcome for the driving
terms is approximately the same. The result for d1

1(s) and d2
0(s) is considerably

smaller than what is expected from the above model. The leading term d0
0(s),

on the other hand, is dominated by the resonance f2(1275) and is therefore not
sensitive to the behaviour of the imaginary parts in the region above 1.5 GeV.

5 Roy equations as integral equations

Once the driving terms are pinned down, the Roy equations for the S- and P -
waves express the real parts of the partial waves in terms of the S-wave scattering
lengths and of a principal value integral over their imaginary parts from 4M 2

π to
s2. Unitarity implies that, in the elastic domain 4M 2

π < s < 16M2
π , the real

and imaginary parts of the partial wave amplitudes are determined by a single
real parameter, the phase shift. If we were to restrict ourselves to the elastic
region, setting s2 = 16M2

π , the Roy equations would amount to a set of coupled,
nonlinear singular integral equations for the phase shifts. We may extend this
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range, provided the elasticity parameters ηI` (s) are known. On the other hand,
since the Roy equations do not constrain the behaviour of the partial waves
for s > 68M2

π , the integrals occurring on the r.h.s. of these equations can be
evaluated only if the imaginary parts in that region are known, together with
the subtraction constants a0

0, a
2
0, which also represent parameters to be assigned

externally.
In the present paper, we do not solve the Roy equations in their full domain

of validity, but use a smaller interval, 4M 2
π < s < s0. The reason why it is

advantageous to use a value of s0 below the mathematical upper limit, s0 < s1,
is that the Roy equations in general admit more than one solution. As will be
discussed in detail in section 6, the solution does become unique if the value of
s0 is chosen between the ρ mass and the energy where the I = 0 S-wave phase
passes through π/2 – this happens around 0.86 GeV. In the following, we use

√
s0 = 0.8 GeV , s0 = 32.9M2

π .

In the variable s, our matching point is nearly at the center of the interval between
threshold and s1 = 68M2

π . We are thus solving the Roy equations on the lower
half of their range of validity, using the upper half to check the consistency of
the solutions so obtained (section 10). Our results are not sensitive to the precise
value taken for s0 (section 9).

The Roy equations for the S- and P -waves may be rewritten in the form

Re tI`(s) = kI` (s)+−
∫ s0

4M2
π

ds′KI 0
` 0 (s, s′) Im t00(s

′)+ −
∫ s0

4M2
π

ds′KI 1
` 1 (s, s′) Im t11(s′)

+−
∫ s0

4M2
π

ds′KI 2
` 0 (s, s′) Im t20(s

′) + f I` (s) + dI` (s) , (5.1)

where I and ` take only the values (I, `) =(0,0), (1,1) and (2,0). The bar across
the integral sign denotes the principal value integral. The functions f I` (s) contain
the part of the dispersive integrals over the three lowest partial waves that comes
from the region between s0 and s2, where we are using experimental data as
input. They are defined as

f I` (s) =
2∑

I ′=0

1∑

`′=0

−
∫ s2

s0
ds′KII ′

``′ (s, s
′) Im tI

′
`′ (s

′) . (5.2)

The experimental input used to evaluate these integrals will be discussed in sec-
tion 7, together with the one for the elasticity parameters of the S- and P -waves.

One of the main tasks we are faced with is the construction of the numerical
solution of the integral equations (5.1) in the interval 4M 2

π ≤ s ≤ s0, for a given
input {a0

0, a
2
0, f

I
` , η

I
` , d

I
`}. Once a solution is known, the real part of the amplitude

can be calculated with these equations, also in the region s0 ≤ s ≤ s1.

13



6 On the uniqueness of the solution

The literature concerning the mathematical structure of the Roy equations was
reviewed in the introduction. In the following, we first discuss the situation for
the single channel case – which is simpler, but clearly shows the salient features –
and then describe the generalization to the three channel problem we are actually
faced with. For a detailed analysis, we refer the reader to two recent papers on
the subject [30, 31] and the references quoted therein.

6.1 Roy’s integral equation in the one-channel case

If we keep only the diagonal, singular Cauchy kernel in (1.1), the partial wave
relations decouple, and the left hand cut in the amplitudes disappears. Each one
of the three partial wave amplitudes then obeys the following conditions:
i) In the interval between the threshold s = 4M 2

π and the matching point s = s0,
the real part is given by a dispersion relation

Re t(s) = a+ (s− 4M 2
π)

1

π
−
∫ ∞

4M2
π

ds′
Im t(s′)

(s′ − 4M2
π ) (s′ − s) . (6.1)

ii) Above s0, the imaginary part Im t(s) is a given input function

Im t(s) = A(s), s ≥ s0 . (6.2)

iii) For simplicity, we take the matching point in the elastic region, so that

t(s) =
1

σ(s)
eiδ(s) sin δ(s) , 4M2

π ≤ s ≤ s0 , (6.3)

where δ(s) is real and vanishes at threshold. We refer the reader to [30] for a
precise formulation of the regularity properties required from the amplitude and
from the input absorptive part. As a minimal condition, we must require

lim
s↗s0

Im t(s) = A(s0) . (6.4)

Otherwise, the principal value integral does not exist at the matching point.
Equations (6.1)–(6.4) constitute the mathematical problem we are faced with

in this case: Determine the amplitudes t(s) that verify these equations for a given
input of scattering length a and absorptive part A(s). Once a solution is known,
the real part of the amplitude above s0 is obtained from the dispersion relation
(6.1), and t(s) is then defined on 4M 2

π ≤ s <∞. The following points summarize
the results relevant in our context:

1. Elastic unitarity reduces the problem to the determination of the real func-
tion δ(s), defined in the interval 4M 2

π ≤ s ≤ s0. The amplitude t(s) is then
obtained from (6.3).
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Figure 2: Boundary conditions on the phase δ(s0) for solving Roy’s integral
equation. Figs. a,b,c represent the cases 0 < δ(s0) < π/2, π/2 < δ(s0) < π and
π < δ(s0) < 3π/2, respectively. In fig. c, the phase winds around the Argand
circle slightly more than once.

2. A given input {a,A(s)} does not, in general, fix the solution uniquely – in
addition, the value of the phase at the matching point plays an important
role. Indeed, let t(s) be a solution and suppose first that the phase at
the matching point is positive. For 0 < δ(s0) < π/2, the infinitesimal
neighbourhood of t(s) does not contain further solutions. For δ(s0) > π/2,
however, the neighbourhood contains an m-parameter family of solutions.
The integer m is determined by the value of the phase at the matching
point ([x] is the largest integer not exceeding x):

m =

[
2δ(s0)

π

]
. (6.5)

For a monotonically increasing phase, the index m counts the number of
times δ(s) goes through multiples of π/2 as s varies from threshold to the
matching point. We illustrate the situation for m = 0, 1, 2 in figure 2.

3. If the value of the phase at the matching point is negative, the problem
does not in general have a solution. In order for the problem to be soluble
at all, the input must be tuned. For −π/2 < δ(s0) < 0, for instance, we
may keep the absorptive part A(s) as it is, but tune the scattering length a.
This situation may be characterized by m = −1: Instead of having a family
of solutions containing free parameters, the input is subject to a constraint.
Once a solution does exist, it is unique in the sense that the infinitesimal
neighbourhood does not contain further solutions.

4. Consider now the case displayed in fig. 2a, where the phase at the matching
point is below π/2. This corresponds to the situation encountered in the
coupled channel case, for our choice of the matching point. According to the
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above statements, a given input {a,A(s)} then generates a locally unique
solution – if a solution exists at all. We take it that uniqueness also holds
globally, see [15].

The solution may be constructed in the following manner: Consider a family of
unitary amplitudes, parametrized through c1, . . . , cn. For any given amplitude,
evaluate the right and left hand sides of eq. (6.1) and calculate the square of the
difference at N points in the interval 4M 2

π ≤ s ≤ s0. Finally, minimize the sum
of these squares by choosing c1, . . . , cn accordingly. Since the solution is unique,
it suffices to find one with this method – it is then the only one.

6.2 Cusps

In general, the solutions are not regular at the matching point, but have a cusp
(branch point) there: δ(s) = δ(s0)+C(s0−s)γ+. . . , with γ > 0. The phenomenon
arises from our formulation of the problem – the physical amplitude is regular
there. We conclude that, even if a mathematical solution can be constructed for
a given input {a,A(s)}, it will in general not be acceptable physically, because
it contains a fictitious singularity at the matching point. The behaviour of the
phase is sensitive to the value of the exponent: If γ is close to 1, the discontinuity
in the derivative is barely visible, while for small values of γ, it manifests itself
very clearly.

The strength of the singularity is determined by the constant C, whose value
depends on the input used. In particular, if the scattering length a is varied,
while the absorptive part A(s) is kept fixed, the size of C changes. We may
search for the value of a at which C vanishes. Although the singularity does not
disappear entirely even then, it now only manifests itself in the derivatives of
the function (for the solution to become analytic at s0, we would need to also
adapt the input for A(s)). In view of the fact that our solutions are inherently
fuzzy, because the values of the input are subject to experimental uncertainties,
we consider solutions with C ' 0 or γ ' 1 as physically acceptable and refer to
these as solutions without cusp.

The search for solutions without cusp can be implemented as follows. Instead
of fixing a, constructing solutions in the class of functions with a cusp and then
determining the value of a at which the cusp disappears, we may simply consider
parametrizations that do not contain a cusp, treating the scattering length a as
a free parameter, on the same footing as the set c1, . . . , cn used to parametrize
the phase shift and minimizing the difference between the left and right hand
sides of eq. (6.1). We have verified that if a solution without cusp does exist, this
procedure indeed finds it: Allowing for the presence of cusps does not lead to a
better minimum.

The net result of this discussion is that the scattering length a must match
the input for A(s) – it does not represent an independent parameter. When
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range of s0 range of δ0
0 range of δ1

1 m

I 1 <
√
s0 < 1.15 π < δ0

0 <
3
2
π 1

2
π < δ1

1 < π 2
II 0.86 <

√
s0 < 1 1

2
π < δ0

0 < π 1
2
π < δ1

1 < π 1
III 0.78 <

√
s0 < 0.86 0 < δ0

0 <
1
2
π 1

2
π < δ1

1 < π 0
IV 0.28 <

√
s0 < 0.78 0 < δ0

0 <
1
2
π 0 < δ1

1 <
1
2
π −1

Table 1: Multiplicity of solutions in the coupled channel case. The multiplicity
index m is the number of free parameters occurring in the solutions of the Roy
equations, if the matching point s0 is in the interval indicated (in GeV units).
Also displayed is the variation of the physical phases δ0

0 and δ1
1 on that interval.

solving the Roy equations, we can at the same time also determine the value
of a that belongs to a given input for the high energy absorptive part. The
conclusion remains valid even if the matching point is above the first inelastic
threshold, provided the elasticity parameter η is known and sufficiently smooth
at the matching point. For a thorough analysis of the issue, we refer to [31].

6.3 Uniqueness in the multi-channel case

In the multichannel case, we need to determine three functions δ0
0, δ

1
1 and δ2

0 for
a given input {a0

0, a
2
0, f

I
` , η

I
` , d

I
`}. The multiplicity index m of the infinitesimal

neighbourhood of a given solution is displayed in table 1 [31], for various values
of the matching point s0. The table contains the following information. In the
situations indicated with the labels I and II, the infinitesimal neighbourhood of
a given solution contains a family of solutions, characterized by 2 and 1 free
parameters, respectively. In case III, the solution is unique in the sense that the
neighbourhood does not contain further solutions, while in case IV a solution only
exists if the input is subject to a constraint (m = −1, compare paragraph 3 in
section 6.1). In order to uniquely characterize the solution in case I, for instance,
we thus need to fix two more parameters – in addition to the input – say the
position of the ρ resonance and its width, or the position of the ρ resonance and
the value of s where the I = 0 phase passes through π/2, and similarly for II. In
the following, we stick to case III, where the solution is unique for a given input.
As discussed above, each of the three partial waves will in general develop a cusp
at the matching point s0, unless some of the input parameters take special values.

The situation encountered in practice is the following. Let 0.1 < a0
0 < 0.6,

and let f I` , ηI` and dI` be fixed as well. For an arbitrary value of the scattering
length a2

0, the solution in general develops a strong cusp in the P -wave. This
cusp can be removed by tuning a2

0 → ā2
0, using for instance the method described

in the single channel case above. Remarkably, it turns out that the solutions
so obtained are nearly free of cusps in the two S-waves as well. The problem
manifests itself almost exclusively in the P -wave, because our matching point is
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rather close to the mass of the ρ, where the imaginary part shows a pronounced
peak. If a2

0 is chosen to slightly differ from the optimal value ā2
0, a cusp in the

P -wave is clearly seen. We thus obtain a relation between the scattering lengths
a0

0 and a2
0. This is how the so-called universal curve, discovered a long time ago

[44], shows up in our framework. We will discuss the properties of this curve in
detail below.

In principle, we might try to also fix a0
0 with this method, requiring that there

be no cusp in one of the two S-waves. The cusps in these are very weak, however
– the procedure does not allow us to accurately pin down the second scattering
length. The choice a0

0 = −0.2, for instance, still leads to a fully acceptable
solution. On the other hand, we did not find a solution in the class of smooth
functions for a0

0 = −0.5. This shows that the analyticity properties that are not
encoded in the Roy integral equations (5.1) do constrain the range of admissible
values for a0

0, but since that range is very large, the constraint is not of immediate
interest, and we do not consider the matter further. In our numerical work, we
consider values in the range 0.15 < a0

0 < 0.30 and use the center of this interval,
a0

0 = 0.225, as our reference point.

7 Experimental input

In this section, we describe the experimental input used for the elasticity below
the matching point at

√
s0 = 0.8 GeV and for the imaginary parts of the S- and

P -waves in the energy interval between
√
s0 and

√
s2 = 2 GeV. The references

are listed in [45]–[59] and for an overview, we refer to [9, 60]. The evaluation of
the contributions from the higher partial waves and from the asymptotic region
(s > s2) is discussed in detail in appendix B.

7.1 Elasticity below the matching point

The Roy equations allow us to determine the phase shifts of the S- and P -
waves only if – on the interval between threshold and the matching point –
the corresponding elasticity parameters η0

0(s), η1
1(s) and η2

0(s) are known. On
kinematic grounds, the transition 2π → 4π is the only inelastic channel open
below our matching point,

√
s0 = 0.8 GeV. The threshold for this reaction is

at E = 4Mπ ' 0.56 GeV, but phase space strongly suppresses the transition at
low energies – a significant inelasticity only sets in above the matching point. In
particular, the transition ππ → KK̄, which occurs for E > 2MK ' 0.99 GeV,
does generate a well-known, pronounced structure in the elasticity parameters of
the waves with I = 0, 1. Below the matching point, however, we may neglect the
inelastic reactions altogether and set

η0
0(s) = η1

1(s) = η2
0(s) = 1 ,

√
s < 0.8 GeV .
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We add a remark concerning the effects generated by the inelastic reaction
2π → 4π, which are analyzed in ref. [57]. In one of the phase shift analyses given
there (solution A), the inelasticity 1 − η1

1(s) reaches values of order 4%, already
in the region of the ρ -resonance. The effect is unphysical – it arises because the
parametrization used does not account for the strong phase space suppression at
the 4π threshold4. For the purpose of the analysis performed in ref. [57], which
focuses on the region above 1 GeV, this is immaterial, but in our context, it
matters: We have solved the Roy equations also with that representation for the
elasticities. The result shows significant distortions, in particular in the P -wave.

7.2 Input for the I = 0, 1 channels

The experimental information on the ππ phase shifts in the intermediate energy
region comes mainly from the reaction πN → ππN . A rather involved analysis is
necessary to extract the ππ phase shifts from the raw data, and several different
representations for the phases and elasticities are available in the literature. The
main source of experimental information is still the old measurement of the re-
action π−p → π−π+n by the CERN–Munich (CM) collaboration [49], but there
are also older, statistically less precise data, for instance from Saclay [45] and
Berkeley [48], as well as newer ones, such as the data of the CERN-Cracow-
Munich collaboration concerning pion production on polarized protons [54] and
those on the reaction π−p → π0π0n, obtained recently by the E852 collabora-
tion at Brookhaven [59]. For a detailed discussion of the available experimental
information, we refer to [9, 57, 60].

For our purposes, energy-dependent analyses are most convenient, because
these yield analytic expressions for the imaginary parts, so that the relevant
integrals can readily be worked out. To illustrate the differences between these
analyses, we plot the corresponding imaginary parts in fig. 3, both for the I = 0
S-wave and for the P -wave. The representations of refs. [47, 55, 57] do not extend
to 2 GeV, but they do cover the range between 0.8 and 1.7 GeV. Unitarity ensures
that the contributions generated by the imaginary parts of the S- and P -waves
in the region between 1.7 and 2 GeV are very small, so that we may use these
representations also there without introducing a significant error. For the P -wave,
the differences between the various parametrizations are not dramatic, but for
the I = 0 S-wave, they are quite substantial. Despite these differences, the result
obtained for the dispersive integrals are similar, at least in the range where we
are solving the Roy equations. This can be seen in fig. 4, where we plot the value
of the dispersion integral f 0

0 , defined in eq. (5.2). The only visible difference is
between parametrization B of ref. [57] and the others. In order of magnitude, the
effect is comparable to the one occurring if the scattering length a0

0 is shifted by
0.01. It arises from the difference in the behaviour of the S-wave imaginary part

4We thank Wolfgang Ochs for this remark.

19



0.6 0.8 1 1.2 1.4 1.6

E(GeV)

0

0.2

0.4

0.6

0.8

1

1.2
Im

 t lI

Au et al.
Bugg et al. (A)
Bugg et al. (B)
Hyams et al.

I=0

I=1

Figure 3: Comparison of the different input we used for the imaginary parts of
the I = 0 and I = 1 lowest partial waves above the matching point at 0.8 GeV.

in the region between 1 and 1.5 GeV. The phase shift analysis of Protopopescu et
al. [48] does not cover that region, as it only extends to 1.15 GeV, but those of Au,
Morgan and Pennington [55] as well as Bugg, Sarantsev and Zou [57] do. Both
of these include, aside from the CM data, additional experimental information,
not included in the analysis of Hyams et al. [47].

In the following, we rely on the representation of Au et al. [55] for the S-wave
and the one of Hyams et al. [47] for the P -wave (the analysis of Au et al. does not
include the P -wave). We have verified that, using [47] also for the S-wave would
not change our results below the matching point, beyond the uncertainties to be
attached to the solutions, anyway. On the other hand, Au et al. [55] yield a more
consistent picture above the matching point – for this reason we stick to that
analysis. More precisely, we use the solution denoted by K1(Etkin) in ref. [55],
table I. That solution contains a narrow resonance in the 1 GeV region, which
does not occur in the other phase shift analyses. In our opinion, the extra state
is an artefact of the representation used: A close look reveals that the occurrence
of this state hinges on small details of the K-matrix representation. In fact, the
resonance disappears if two of the K-matrix coefficients are slightly modified, for
instance with (−c0

12,−c0
22) = (3.1401, 2.8447) → (3.2019, 2.6023).

20



0.2 0.3 0.4 0.5 0.6 0.7 0.8

E(GeV)

0

0.05

0.1

0.15

0.2

f 00
Au et al.
Hyams et al.
Bugg et al. (B)

Figure 4: Comparison of the results obtained for the dispersion integral f 0
0 with

the various imaginary parts shown in fig. 3.

7.3 Phase of the P -wave from e+e− → π+π− and τ → π−π0 ντ

For the P -wave, the data on the processes e+e− → π+π− and τ → π−π0 ντ yield
very useful, independent information. The corresponding transition amplitude is
proportional to the pion form factor Fe.m.(s) of the electromagnetic current and
to the form factor FV (s) of the charged vector current, respectively. The data
provide a measurement of the quantities |Fe.m.(s)| and |FV (s)| in the time-like
region, s > 4M2

π .
In the isospin limit, the two form factors coincide: The currents only differ by

an isoscalar operator that carries odd G-parity, so that the pion matrix elements
thereof vanish. While the isospin breaking effects in |FV (s)| are very small, ρ−ω
interference does produce a pronounced structure in the electromagnetic form
factor. The ω-resonance generates a second sheet pole in the isoscalar matrix
elements, at s = (Mω − i 1

2
Γω)2. The residue of the pole is small, of order

O(md − mu, e
2), but in view of the small width of the ω, the denominator also

nearly vanishes for s = M 2
ω. Moreover, the pole associated with the exchange of a

ρ occurs in the immediate vicinity of this point, so that the transition amplitude
involves a sum of two contributions that rapidly change with s, both in magnitude
and phase. Since the interference phenomenon is well understood, it can be
corrected for. When this is done, the data on the two processes e+e− → π+π−

and τ → π−π0ν are in remarkably good agreement (for a review, see [61, 62]).
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We denote the phase of the vector form factor by φ(s),

FV (s) = |FV (s)| e i φ(s) .

In the elastic region 4M 2
π < s < 16M2

π , the final state interaction exclusively
involves ππ scattering, so that the Watson theorem implies that the phase φ(s)
coincides with the P -wave phase shift,

φ(s) = δ1
1(s) , 4M2

π < s < 16M2
π .

In fact, phase space suppresses the inelastic channels also in this case – the
available data on the decay channel τ → 4π ντ show that, for E < 0.9 GeV, the
inelasticity is below 1%, so that the phase of the form factor must agree with the
P -wave phase shift, to high accuracy [63].

In the region where the singularity generated by ρ -exchange dominates, in
particular also in the vicinity of our matching point, the form factor is well rep-
resented by a resonance term and a slowly varying background. Quite a few such
representations may be found in the recent literature. Since the uncertainties
in the data (statistical as well as systematic) are small, these parametrizations
agree quite well. In the following, we use the Gounaris-Sakurai representation of
ref. [64] as a reference point. That representation involves a linear superposition
of three resonance terms, associated with ρ(770), ρ(1450) and ρ(1700). We have
investigated the uncertainties to be attached to this representation by (a) com-
paring the magnitude of the form factor with the available data5, (b) comparing
it with other parametrizations, (c) varying the resonance parameters in the range
quoted in ref. [64] and (d) using the fact that analyticity imposes a strong cor-
relation between the phase of the form factor and its magnitude. On the basis
of this analysis, we conclude that the e+e− and τ data determine the phase of
the P -wave at 0.8 GeV to within an uncertainty of ±2◦. A detailed comparison
between the phase of the form factor and the solution of the Roy equations for
the P -wave will be given in section 12.2.

7.4 Phases at the matching point

In the framework of our analysis, the input used for s ≥ s0 enters in two ways:
(i) it specifies the value of the three phases at the matching point and (ii) it
determines the contributions to the Roy equation integrals from the region above
that point. Qualitatively, we are dealing with a boundary value problem: At
threshold, the phases vanish, while at the matching point, they are specified by
the input. The solution of the Roy equations then yields the proper interpolation
between these boundary values. The behaviour of the imaginary parts above the
matching point is less important than the boundary values, because it only affects
the slope and the curvature of the solution.

5We are indebted to Simon Eidelman and Fred Jegerlehner for providing us with these.
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δ0
0 δ1

1 δ1
1 − δ0

0 reference

81.7 ± 3.9 105.2 ± 1.0 23.4 ± 4.0 [46, 47]
90.4 ± 3.6 115.2 ± 1.2 24.8 ± 3.8 [50] s-channel moments
85.7 ± 2.9 116.0 ± 1.8 30.3 ± 3.4 [50] t-channel moments

81.6 ± 4.0 108.1 ± 1.4 26.5 ± 4.2 [48] table VI

80.9 105.9 25.0 [46, 47]
79.5 106.1 26.5 [57] solution A
79.9 106.8 26.9 [57] solution B
80.7 − − [55] solution K1

82.0 − − [55] solution K1(Etkin)

Table 2: Value of the phases δ0
0 and δ1

1 at 0.8 GeV. The first three rows stem from
analyses of the data at a fixed value of the energy (“energy independent”), while
the remaining entries are obtained from a fit to the data that relies on an explicit
parametrization of the energy dependence (“energy dependent analysis”).

We now discuss the available information for the phases δ0
0 and δ1

1 at the
matching point. The values obtained from the high energy, high statistics πN →
ππN experiments are collected in table 2. In those cases where the published
numbers do not directly apply at 0.8 GeV, we have used a quadratic interpolation
between the three values of the energy closest to this one. The errors given in
the third column are obtained by adding those from the first two columns in
quadrature. For the energy dependent entries, the error analysis is more involved
– only ref. [48] explicitly quotes an error. The scatter seen in the table partly
arises from the fact that different methods of analysis are used. The corresponding
systematic uncertainties are not covered by the error bars quoted in the individual
phase shift analyses: Taken at face value, the numbers listed in the table are
contradictory, particularly in the case of the P -wave. For a thorough discussion
of the experimental discrepancies, we refer to [60].

As discussed above, both the statistical and the systematic uncertainties of
the e+e− and τ data are considerably smaller. They constrain the phase of the
P -wave at 0.8 GeV to a narrow range, centered around the value δ1

1(s0) = 108.9◦

obtained with the Gounaris-Sakurai representation of the form factor in ref. [64]:

δ1
1(s0) = 108.9◦ ± 2◦ . (7.1)

The comparison with the numbers listed in the second column of the table shows
that this value is within the range of the results obtained from πN → ππN .

Unfortunately, the e+e− and τ data only concern the P -wave. To pin down
the I = 0 S-wave, we observe that the overall phase of the scattering amplitude
drops out when considering the difference δ1

1 − δ0
0, so that one of the sources

of systematic error is absent. Indeed, the third column in the table shows that
the outcome of the various analyses is consistent with the assumption that the
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fluctuations seen are of statistical origin. The statistical average of the energy
independent analyses yields δ1

1(s0) − δ0
0(s0) = 26.6◦ ± 3.7◦, with χ2 = 2 for 2

degrees of freedom (as the numbers are based on the same data, we have inflated
the error bar – the number given is the mean error of the three data points). The
remaining entries in the table neatly confirm this result. Combining it with the
one in the fourth row, which is based on independent data, we finally arrive at

δ1
1(s0)− δ0

0(s0) = 26.6◦ ± 2.8◦ . (7.2)

Since the value for δ1
1 comes from the data on the form factor, while the one for

the difference δ1
1− δ0

0 is based on the reaction πN → ππN , these numbers are in-
dependent, so that it is legitimate to combine them. Adding errors quadratically,
we obtain

δ0
0(s0) = 82.3◦ ± 3.4◦ . (7.3)

In the following, we rely on the two values for the phases at the matching
point given in eqs. (7.1) and (7.3). We emphasize that the πN → ππN data
are consistent with these – in fact, the result of the energy-dependent analysis
quoted in the fourth row of the table is in nearly perfect agreement with the
above numbers. We are exploiting the fact that the e+e− and τ data strongly
constrain the behaviour of the P -wave in the region of the ρ, thus reducing the
uncertainties in the value of δ1

1 at the matching point.
For the principal value integrals to exist, we need to continuously connect

the values of the imaginary parts calculated from the phases at the matching
point with those of the phase shift representation we wish to use. This can be
done, either by slightly modifying the parameters occurring in the representation
in question or with a suitable interpolation of the phases between the matching
point and KK̄ threshold. We have checked that our results do not depend on
how that is done, as long as the interpolation is smooth. Note that, for the
representation K1(Etkin) [55] – our reference input for the imaginary part of the
I = 0 S-wave – an interpolation is not needed: The last row of table 2 shows
that, at the matching point, this representation nearly coincides with the central
value in eq. (7.3).

7.5 Input for the I = 2 channel

The uncertainties in this channel are rather large. The current experimental
situation is summarized in fig. 5, where we show the data points from the two main
experiments [51, 53], and five different parametrizations that we will use as input.
The central one is our best fit to the data of the Amsterdam–CERN–Munich
collaboration (ACM) [53] solution B (which we call from now on ACM(B)) with
a parametrization à la Schenk [65]. To cover the rather wide scatter of the data,
we have varied the input in this channel, using the five curves shown in the figure,
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Figure 5: Different data sets for the S-wave in the I = 2 channel and curves
that we have used as input in the Roy equation analysis.

together with η2
0 = 1 (note that for the Roy equation analysis, only the value of

the scattering length a2
0 and the behaviour of the imaginary part above 0.8 GeV

matter).

8 Numerical solutions

In the preceding section, the input required to evaluate the r.h.s. of our system
of equations was discussed in detail. In the present section, we describe the
numerical method used to solve this system and illustrate the outcome with an
example.

8.1 Method used to find solutions

We search for solutions of the Roy equations by numerically minimizing the square
of the difference between the left and right hand sides of eq. (5.1) in the region
between threshold and 0.8 GeV. As we are neglecting the inelasticity in this
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region, the real and imaginary parts of tI` (s) are determined by a single real
function, the phase δI` (s). In principle, the minimization should be performed
over the whole space of physically acceptable functions {δ0

0(s), δ1
1(s), δ2

0(s)}, but
for obvious practical reasons we restrict ourselves to functions described by a
simple parametrization. We will use the one proposed by Schenk some time ago
[65], allowing for an additional parameter in the polynomial part:

tan δI` =

√

1 − 4M2
π

s
q2`

{
AI
` +BI

` q
2 + CI

` q
4 +DI

` q
6
}(4M2

π − sI`
s− sI`

)
, (8.1)

The first term represents the scattering length, while the second is related to the
effective range:

aI` = AI
` , bI` = BI

` +
4

sI` − 4M2
π

AI
` −

1

M2
π

(
AI
`

)3
δ` 0 . (8.2)

In each channel, one of the five parameters is fixed in order to ensure the proper
value of the phase at s0. Moreover the S-wave scattering lengths a0

0 and a2
0 are

identified with the two constants that specify the subtraction polynomials in the
Roy equations. As discussed in sect. 6, we need to tune the value of a2

0 in order
to avoid cusps. Treating this parameter on the same footing as the others, we
are dealing altogether with 15 − 3 − 1 = 11 free variables, to be determined by
a minimization procedure. Our choice of s0 ensures that the solution is unique,
and therefore the method is safe: The choice of a bad parametrization would
manifest itself in a failure of the minimization method – the minimum would not
yield a decent solution.

The square of the difference between the left and right hand sides of the Roy
equations is calculated at 22 points between threshold and s0 for each of the three
waves, so that the sum of squares (∆2

Roy) contains 66 terms. The minimization
of the function (∆2

Roy) over 11 parameters can be handled by standard numerical
routines [66]. Our procedure does generate decent solutions: The differences be-
tween the left and right hand sides of the Roy equations are not visible on our
plots – they are typically of order 10−3. The equations could be solved even more
accurately by allowing for more degrees of freedom in the parametrization of the
phases, but, in view of the uncertainties in the input, the accuracy reached is per-
fectly sufficient. Note also that the exact solution corresponding to a given input
contains cusps. We have checked that these are too small to matter: Enlarging
the space of functions on which the minimum is searched by explicitly allowing
for such cusps in the parametrization of the phases, we find that the solutions
remain practically the same.

8.2 Illustration of the solutions

To illustrate various features of our numerical solutions, we freeze for a moment
all the inputs and analyze the properties of the specific solution we then get.
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Figure 6: Numerical solution of the Roy equations for a0
0 = 0.225, a2

0 = −0.0371
(the value of a0

0 corresponds to the center of the range considered while the one
of a2

0 results if the input used for Im t20 is taken from the central curve in fig. 5).
The arrow indicates the limit of validity of the Roy equations.

The input for the imaginary parts above s0 is the following: For the I = 0 wave,
we use the parametrization labelled K1 (Etkin) of Au et al. [55]. In the case of
the I = 1 wave, we rely on the energy–dependent analysis of Hyams et al. [47],
smoothly modified between s0 and 4M2

K to match the value δ1
1(s0) = 108.9◦. For

the I = 2 wave, we take the central curve in fig. 5. The driving terms are specified
in eq. (4.1). Moreover we fix a0

0 = 0.225. With this input, the minimization leads
to a2

0 = −0.0371 and the Schenk parameters take the values listed in table 3, in
units of Mπ.
The plot in fig. 6 shows that the numerical solution is indeed very good: Below
s0, it is not possible to distinguish the two curves representing the right and left

I = 0 I = 1 I = 2

AI
` 0.225 3.63 · 10−2 −3.71 · 10−2

BI
` 0.246 1.34 · 10−4 −8.55 · 10−2

CI
` −1.67 · 10−2 −6.98 · 10−5 −7.54 · 10−3

DI
` −6.40 · 10−4 1.41 · 10−6 1.99 · 10−4

sI` 36.7 30.7 −11.9

Table 3: Schenk parameters of the solution shown in fig. 6.
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hand sides of eq. (5.1). For this solution we found as a minimum ∆2
Roy

= 2.1·10−5,
which corresponds to an average difference between the right and left hand sides
of about 6 · 10−4.

Having solved the Roy equations in the low–energy region, we now have a
representation for the imaginary parts of the three lowest partial waves from
threshold up to s2. Since the driving terms account for all remaining contri-
butions, we can then calculate the Roy representation for the real parts from
threshold up to 1.15 GeV (full lines in fig.6). On the same plot, above s0, we also
show the real part of the partial wave representation that we used as an input for
the imaginary parts (dashed lines). The comparison shows that the input we are
using is well compatible with the Roy equations (we should stress at this point
that in none of the phase–shift analyses which we are using as input the Roy
equations have been used).

9 Universal band

As we have discussed in the preceding sections, for a given value of a0
0 and fixed

input, the Roy equations admit a solution without cusp only for a single value
of a2

0. By varying the input value of a0
0, the Roy equations define a function

a2
0 = F (a0

0) that is known in the literature as the “universal curve” [44]. The
experimental uncertainties in the input above 0.8 GeV convert this curve into
a band. The universal band is the area in the (a0

0, a
2
0) plane that is allowed

by the constraints given by the ππ–scattering data above 0.8 GeV and the Roy
equations. In this section we give a more precise definition of our universal band,
and calculate it accordingly.

We first point out that the universal curve a2
0 = F (a0

0) depends rather mildly
on the input in the I = 0 and I = 1 channel (a more quantitative statement
concerning this dependence is given below). For this reason, we only consider
the uncertainties in the input for the I = 2 channel. The available data in this
channel are shown in fig. 5, together with five different curves that we have used as
input. For each one of these, we obtain a universal curve, which nearly represents
a straight line in the (a0

0, a
2
0) plane. The resulting five lines are shown in fig. 7.

The central one is well represented by the following second degree polynomial:

a2
0 = −0.0849 + 0.232 a0

0 − 0.0865 (a0
0)2 . (9.1)

The analogous representations for the top and bottom lines read:

a2
0 =−0.0774 + 0.240 a0

0 − 0.0881 (a0
0)2 ,

a2
0 =−0.0922 + 0.225 a0

0 − 0.0847 (a0
0)2 . (9.2)

The region between these two solid lines is our universal band. It is difficult
to make a precise statement in probabilistic terms of how unlikely it is that
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Figure 7: Universal band. The five lines correspond to the five different curves
shown in fig. 5 (the top line, for instance, results if the input for Im t20 in the
region above 0.8 GeV is taken from the top curve in that figure). S0 marks our
reference point: a2

0 = 0.225, a2
0 = −0.0371. The bar attached to it indicates the

uncertainty in a2
0 due to the one in the phase δ0

0 at the matching point – the most
important remaining source of error if the input for Im t20 is held fixed.

the physical values of the two scattering lengths are outside this band. With
our rather generous choice of the two extreme curves, we consider it fair to say
that the experimental information above the matching point essentially excludes
such values. In fact, we will argue below that the theoretical constraints arising
from the consistency of the Roy equations above the matching point restrict the
admissible region even further.

We now turn to the dependence of the universal curve a2
0 = F (a0

0) on the
input in the I = 0 and I = 1 channels, keeping the one for I = 2 fixed. Changes
in the input above 2MK are practically invisible at threshold: If we keep the
phase shifts at the matching point fixed, the three different available inputs for
the I = 0 and I = 1 channels yield values of a2

0 that differ by less than one
permille. The phase shifts at s0 are the only relevant factor here. Moreover, for
the value of a2

0, δ
0
0(s0) is much more important than δ1

1(s0): Shifts of δ1
1(s0) by

±2◦ change the value of a2
0 roughly by a permille, but a change by ±3.4◦ in δ0

0(s0)
induces a shift of ∆a2

0 = ±8.4 · 10−4, which amounts to two percent. Even so,
this is much smaller than the width of the band, as can be seen in fig. 7.
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We have also varied
√
s0 within the bounds 0.78 and 0.86 GeV and found that

the dependence of the relation a2
0 = F (a0

0) on s0 is rather weak. To exemplify, we
mention that for the solution with a0

0 = 0.25 at the center of the universal band,
a shift from

√
s0 = 0.8 GeV to 0.85 GeV changes a2

0 by 10−3.

10 Consistency

It takes a good balancing of the various terms occurring in the Roy equations for
the partial waves not to violate the unitarity limit. In the case of the S-wave with
I = 0, for instance, the contribution to Re t00 that arises from the subtraction term
k0

0(s) is very large already at 1 GeV: The solution shown in fig. 6 corresponds to
a0

0 = 0.225 and a2
0 = −0.0371, so that k0

0(s) = 2.7 for s = 1 GeV2. As the energy
grows, the term increases and reaches k0

0(s1) = 3.6 at the upper end of the region
where our equations are valid, s1 = 68M2

π . Unless the contributions from the
dispersion integrals nearly compensate the subtraction term, the unitarity limit,
|Re t00 | ≤ (2σ)−1 ' 1

2
is violated. The example in fig. 6 demonstrates that we do

find solutions for which such a cancellation takes place, with values of a0
0, a2

0 that
are within the universal band.

It is striking that, above the matching point, this solution very closely fol-
lows the real part of the input. In a restricted sense, this is necessary for the
solution to be acceptable physically: The solution is obtained by identifying the
imaginary part above the matching point with the one obtained from a particular
representation of the partial waves. The Roy equations then determine the real
part of the amplitude in the region below

√
s1 = 1.15 GeV. If the result were very

different from the real part of the particular representation used, we would have
to conclude that this representation cannot properly describe the physics. This
amounts to a consistency condition: Above the matching point, the Roy solution
should not strongly deviate from the real part of the input. The condition can
be met only if the cancellation discussed above takes place, but it is stronger.
The example in fig. 6 demonstrates that there are solutions that obey the consis-
tency condition remarkably well, indicating that our apparatus is indeed working
properly.

We will discuss the consistency condition on a quantitative level below. Before
entering this discussion, we briefly comment on a different aspect of our frame-
work: the stability of the solutions. The behaviour below 0.8 GeV is not sensitive
to the uncertainties in the input used for the imaginary parts above 1 GeV. We
can modify that part of the input quite substantially, and without changing any-
thing else (not even below s0) still get a decent solution from threshold up to
the limit of validity of our equations. Naturally, if we do not modify the Schenk
parameters that define the phase below s0, the Roy equations are not strictly
obeyed, but the deviation from the true solution is quite small. The reason is
that, if s is small, the kernels KII ′

``′ (s, s′) strongly suppress the contributions from

30



0.2 0.4 0.6 0.8 1 1.2

E(GeV)

−0.4

−0.2

0

0.2

0.4

0.6

R
ea

l p
ar

t

Roy
Input for E>0.8 GeV

I=0

I=1

I=2

0.2 0.4 0.6 0.8 1 1.2

E(GeV)

−0.4

−0.2

0

0.2

0.4

0.6

R
ea

l p
ar

t

Roy
Input for E>0.8 GeV

I=0

I=1

I=2

Figure 8: Solutions of the Roy equations for a0
0 = 0.225 and two extreme values

for a2
0. The left figure corresponds to the point S2 in fig.7, while the one on the

right shows the solution for S1. The arrows indicate the limit of validity of the
Roy equations.

the region where s′ is large. The term K00
00 (s, s′), for instance, has the following

expansion for s′ � s:

K00
00(s, s′) =

1

9

{
11s2 − 10s(4M2

π )− (4M2
π )2
} 1

s′ 3
+O

(
1

s′4

)
.

The interval above 1 GeV only generates very small contributions to the integrals
on the r.h.s. of the Roy equations, if these are evaluated in the region below the
matching point.

We now take up the consistency condition and first observe that, once a solu-
tion has a consistent behaviour above the matching point, reasonable changes in
the input above 1 GeV lead to solutions that also obey the consistency condition:
It looks as if the Roy equations were almost trivially satisfied, behaving like an
identity for E > 1 GeV. Is this consistent behaviour automatic, or does it depend
crucially on part of the input ?

The answer to this question can be found in fig. 8, where we show two solutions
obtained with the same value of a0

0 as in fig. 6, but different inputs for Im t20: The
solution on the left is obtained by using the top curve in fig. 5 instead of the
central one (a2

0 = −0.0279 instead of a2
0 = −0.0371). The solution on the right

corresponds to the bottom curve in fig. 5, where a2
0 = −0.0460. The figure clearly

shows that the consistent picture which we have at the center of the universal
band is almost completely lost if we go to the upper border of this band: It is by
no means trivial that we at all find solutions for which the output is consistent
with the input.

The fact that the peaks and valleys seen in the solutions mimic those in the
input can be understood on the basis of analyticity alone: The curvature above
the matching point arises from the behaviour of the imaginary parts there. The
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relevant term is the one from the principal value integral,

Re t(s) =
1

π
−
∫ s2

4M2
π

ds′
Im t(s′)

s′ − s + r(s) .

The remainder, r(s) contains the contributions associated with the subtraction
polynomial, the left hand cut, the higher partial waves, as well as the asymptotic
region. On the interval s0 < s < s1, it varies only slowly and is well approximated
by a first order polynomial in s.

The representations of the partial wave amplitudes that we are using as an
input are specified in terms of simple functions. In the vicinity of the region
where we are comparing their real parts with the Roy solutions, these are ana-
lytic in s, except for the cut along the positive real axis. Hence they also admit
an approximate representation of the above form – the contributions from distant
singularities are well approximated by a first order polynomial. Disregarding the
interpolation needed to match the representation with the prescribed value of
the phase at s0, their imaginary parts coincide with the one of the corresponding
Roy solution above the matching point. The small differences occurring in the
interpolation region and below the matching point do not generate an important
difference in the curvature. We conclude that the difference between the Roy so-
lution and the real part of the input must be linear in s, to a good approximation.
Moreover, within the accuracy to which our solutions obey the Roy equations,
the two expressions agree at the matching point, by construction. Accordingly,
the relation can be written in the form

Re t(s)
Roy

= Re t(s)
input

+ (s− s0)β . (10.1)

We have checked that this relation indeed holds to sufficient accuracy, for all three
partial waves. This does not yet explain why the solution follows the real part of
the input, but shows that it must do so up to a term linear in s that vanishes at
the matching point. In particular, if the difference between input and output is
small at the upper end of validity of our equations, then analyticity ensures that
the same is true in the entire region between the matching point and that energy
(in this interval, s varies by about a factor of two).

In view of the uncertainties attached to our input, we cannot require the
Roy equations to be strictly satisfied also above the matching point. The band
spanned by the two green lines in fig. 9 shows the region in the (a0

0, a
2
0) plane,

where the solution for Re t00(s) differs from the real part of the input by less
than 0.05 (expressed in terms of the parameter β in eq. (10.1), this amounts to
|β0

0| < 0.07 GeV−2). Likewise, the band spanned by the two blue lines represents
the region where |Re t20(s)Roy − Re t20(s)input| < 0.05, so that |β2

0| < 0.07 GeV−2.
The corresponding band for the P -wave is much broader – in this channel, the
consistency condition is rather weak and is met everywhere inside the universal
band. We conclude that, in the lower half of the universal band, all three waves
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Figure 9: Regions inside which the consistency condition is met. The band
between the two blue lines is for the condition in the I = 2 channel, whereas
the one between the two green lines is for the I = 0 channel. The two red lines
delimit the band inside which the Olsson sum rule is satisfied. The shaded area
gives the intersection of the three bands.

show a consistent behaviour, while for the upper quarter of the band, this is not
the case (the situation at the upper border is shown on the left in fig. 8).

It is not difficult to understand why the consistency condition is strongest
for the I = 0 S-wave. In this connection, the most important term in the Roy
equations is the one from the subtraction polynomial – the solution can satisfy the
consistency condition only if the term proportional to s is nearly cancelled by a
linear growth of the remaining contributions. The term generates the contribution
(β0

0, β
1
1, β

2
0) = (6, 1,−3) × (2a2

0 − 5a2
0)/(72M2

π ) to the coefficients that describe
the difference between output and input for the three lowest partial waves. The
subtraction polynomial thus contributes twice as much to β0

0 as to β2
0, so that the

consistency band for the I = 2 wave must be about twice as broad as the one for
the I = 0 wave, while the one for the P -wave must roughly be six times broader.
At the qualitative level, these features are indeed born out in the figure, but we
stress that the term from the subtraction polynomial is not the only one that
matters – those arising from the integrals also depend on the values of a0

0 and a2
0.

The two green lines correspond to a variation in a2
0 by about ±0.004. Increasing
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a2
0 by 0.004, the value of the subtraction term k2

0(s1) decreases by 0.10. The fact
that the lines correspond to a change in Re t00(s1) of only ±0.05 implies that the
contributions from the integrals reduce the shift by a factor of 2. Also, if only
the subtraction term were relevant, the consistency bands would be determined
by the combination 2a2

0 − 5a2
0 and thus have a slope of 2

5
. Actually, these bands

are roughly parallel to the universal band, whose slope is positive, but smaller by
about a factor of 2.

11 Olsson sum rule

In the Roy equations, the imaginary parts above the matching point and the two
subtraction constants a0

0, a
2
0 appear as independent quantities. The consistency

condition interrelates the two in such a manner that the contributions from the
integrals over the imaginary parts nearly cancel the one from the subtraction
term. In fact, a relation of this type can be derived on general grounds.

The fixed-t dispersion relation (2.4) contains two subtractions. In principle,
one subtraction suffices, for the following reason. The t-channel I = 1 amplitude

T (1)(s, t) ≡ 1

6
{2T 0(s, t) + 3T 1(s, t)− 5T 2(s, t)}

does not receive a Pomeron contribution and thus only grows in proportion to
sαρ(t) for s→∞. The dispersion relation (2.4), however, does contain terms that
grow linearly with s. For the relation to be consistent with Regge asymptotics, the
contribution from the subtraction term must cancel the one from the dispersion
integral6. At t = 0, this condition reduces to the Olsson sum rule, which relates
the subtraction constants to an integral over the imaginary parts [67]:

2 a0
0 − 5 a2

0 =
M2

π

8π2

∫ ∞

4M2
π

ds
2 ImT 0(s, 0) + 3 ImT 1(s, 0)− 5 ImT 2(s, 0)

s (s− 4M2
π )

. (11.1)

It is well known that this sum rule converges only slowly – the contributions from
the asymptotic region cannot be neglected. We split the integral into four pieces,

2 a0
0 − 5 a2

0 = OSP +OD +OF +Oas .

The first term represents the contributions from the imaginary parts of the S-
and P -waves in the region below 2 GeV, which are readily worked out, using
our Roy solutions on the interval from threshold to 0.8 GeV and the input phase
shifts on the remainder. The result is not very sensitive to the input used and is
well approximated by a linear dependence on the scattering lengths,

OSP = 0.483 ± 0.011 + 1.13 (a0
0 − 0.225) − 1.01 (a2

0 + 0.0371) .

6In the case of the t-channel amplitudes with I = 0 and I = 2, the fixed-t dispersion relation
(2.4) does ensure the proper asymptotic behaviour.
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The remainder is closely related to the moments I In introduced in appendix B.1:
here, we are concerned with the case n = −1. The term OD describes the con-
tribution from the imaginary part of the D-waves, in the interval from threshold
to 2 GeV. The relevant experimental information is discussed in appendix B.3,
where we also explain how we estimate the uncertainties. The numerical result
reads OD = 0.061 ± 0.004, including the small, negative contribution from the
I = 2 D-wave. The bulk stems from the tensor meson f2(1275): In the nar-
row width approximation, this contribution amounts to 0.063. For the analogous
contribution due to the F -wave, we obtain OF = 0.017± 0.002 (in narrow width
approximation, the term generated by the ρ3(1690) yields 0.013). Those from
the asymptotic region are dominated by the leading Regge trajectory – as noted
above, the Pomeron does not contribute. Evaluating the asymptotic contribu-
tions with the formulae given in appendix B.4, we obtain Oas = 0.102 ± 0.017.
Collecting terms, this yields

2 a0
0 − 5 a2

0 = 0.663 ± 0.021 + 1.13 (a0
0 − 0.225) − 1.01 (a2

0 + 0.0371) . (11.2)

The result corresponds to a band in the (a0
0, a

2
0) plane:

a2
0 = −0.044 ± 0.005 + 0.218 (a0

0 − 0.225) . (11.3)

The band is spanned by the two red lines shown in fig. 9. One of these nearly
coincides with the lower border of the universal band, while the other runs near
the center. The Olsson sum rule thus imposes roughly the same relation between
a0

0 and a2
0 as the consistency condition. Note that the asymptotic contributions

are numerically quite important here: The term Oas amounts to a shift in a2
0

of −0.026 ± 0.004. The fact that – in the region where our solutions are inter-
nally consistent – the sum rule is indeed obeyed, represents a good check on our
asymptotics.

The Olsson sum rule ensures the proper asymptotic behaviour of the ampli-
tude only for t = 0. In order for the terms that grow linearly with s to cancel
also for t 6= 0, the imaginary part of the P -wave must obey an entire family of
sum rules. The matter is discussed in detail in appendix C.1, where we demon-
strate that one of these offers a further, rather sensitive test of our framework.
The relationship between the Roy equations and those proposed by Chew and
Mandelstam [68] is described in appendix C.2, where we also comment on the
asymptotic behaviour of the dispersion integrals that occur on the r.h.s. of the
Roy equations for the S- and P -waves.

12 Comparison with experimental data

In our framework, the only free parameter is a0
0. Comparing our Roy equation

solutions to data, we can determine the range of a0
0 consistent with these, as well
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as a corresponding range for a2
0. This experimental determination of the two

S-wave scattering lengths is the final scope of the present analysis and the main
subject of the present section. Data on the ππ amplitude are available in a rather
wide range of energies (we do not indicate the upper limit in energy when this
exceeds 1.15 GeV, the limit of validity of our equations):

• Ke4 data for the combination δ0
0 − δ1

1 (2Mπ ≤ E ≤ 0.37 GeV);

• ACM and Losty et al. data for δ2
0 (0.35 GeV ≤ E);

• Data on the vector form factor – according to the discussion in section
7.3, these can safely be converted into values for δ1

1 in the region of the ρ
(0.5 ≤ E ≤ 0.9 GeV);

• CERN–Munich, and Berkeley data in the channels with I = 0 and I = 1
(0.5 GeV ≤ E);

In the Roy equations, a0
0 and a2

0 exclusively enter through the subtraction poly-
nomials, specified in eq. (1.2). Those relevant for the S-waves contain a con-
stant contribution given by the scattering length and a term proportional to
(s − 4M2

π ) × (2a0
0 − 5a2

0). In the I = 0 wave, that term is larger than a0
0 from

E ∼ 0.5 GeV on. For the I = 2 wave, the linear term starts dominating over
a2

0 even earlier. Since t11(s) vanishes at threshold, the corresponding subtrac-
tion polynomial exclusively involves the linear term. This implies that, except
in the vicinity of threshold, the behaviour of the solutions is sensitive only to
the combination 2a0

0 − 5a2
0 of scattering lengths – roughly the combination that

characterizes the universal band. Accordingly, only data that reach down close
to threshold give a direct handle to separately determine a0

0 and a2
0. In fact, only

those coming from Ke4 decays meet this condition.
There is another threshold in energy that is obviously relevant for our ap-

proach: the matching point s0. We will make a clear distinction between data
points below s0 and those at higher energies. The comparison to data above s0

can hardly yield any information on the scattering lengths, because the behaviour
of our solutions at those energies very strongly depends on the input used for the
imaginary parts: The uncertainties in the experimental input completely cover
the dependence of the solutions on the scattering lengths – we will discuss this in
detail below. Instead, we analyze the requirement that the solution is consistent
with the input for s > s0, in the sense discussed in section 10. This condition
turns out to be practically independent of the input used for the imaginary parts
above s0 and does therefore yield a meaningful constraint on 2a0

0 − 5a2
0.

12.1 Data on δ0
0 − δ1

1 from Ke4, and on δ2
0 below 0.8 GeV

Let us first consider the Ke4 data. The comparison between our solutions and the
high-statistic data of the Geneva–Saclay collaboration [69] is shown in fig. 10, for
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Figure 10: Comparison of our Roy solutions for different values of the scattering
lengths with the data of the Geneva–Saclay collaboration, Rosselet et al. [69].
The full, dash-dotted and dashed lines correspond to the points S0, S2 and S3 in
fig. 7.

various values of the scattering lengths. The figure confirms the simple intuition
that these data are mainly sensitive to a0

0. In accordance with previous analyses
[75], we find that they roughly constrain a0

0 to the range between 0.18 and 0.3.
As for the low–energy data in the I = 2 channel, we should stress that this

wave is quite strongly constrained once δ2
0(s0) is fixed. Because of the absence

of any structures between threshold and 0.8 GeV, once we fix δ2
0(s0), the only

freedom is in the way the phase approaches zero at threshold, i.e. in the value
of a2

0 – which depends on a0
0. Fig. 11 shows that, at fixed δ2

0(s0), even a sizeable
change in a0

0 is barely visible in the I = 2 phase. The only important factor
here is the value of the phase at the matching point: The comparison with the
experimental data basically tells us which value of δ2

0(s0) is preferred.
A quantitative statement can be made in terms of χ2, and in principle we

could calculate three different χ2-values, based on the three sets of data shown
in fig. 5. Two of these, however, represent two different analyses of the same
set of πN → ππN data. Their difference is a clear sign of the presence of
sizeable systematic errors. We have estimated the latter using the difference,
point by point, between the two analyses A and B of ref. [53], and added this in
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Figure 11: Comparison of our Roy solutions with the data on δ2
0 obtained by

the ACM collaboration [53] and by Losty et al. [51]. The full, dash-dotted and
dashed lines correspond to the points S0, S2 and S3 in fig. 7.

quadrature to the statistical errors. As reference we have used the ACM(A) set
of data, but have checked that interchanging it with the one of Losty et al. does
not give significantly different results. The corresponding χ2, combined with the
one obtained from the Ke4 data, has a minimum χ2

min = 5.1 (with 8 d.o.f.) at
a0

0 = 0.242, a2
0 = −0.0357. The contour corresponding to 68% confidence level

(χ2 = χ2
min + 2.3) is shown in fig. 12: The range 0.18 < a0

0 < 0.3 is dictated by
the Ke4 data, whereas the I = 2 data exclude the upper border of the band.

12.2 The ρ resonance.

The input used at the matching point implies that the P -wave phase shift must
pass through 90◦ somewhere between threshold and 0.8 GeV – the Roy equations
determine the place where this happens and how rapidly the phase must grow
with the energy there. The solutions turn out to be very stiff: Varying the
values of a0

0 and a2
0 within the universal band, and also varying the input for the

imaginary parts above 0.8 GeV within the experimental uncertainties, we obtain
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Figure 12: Range selected by the data below 0.8 GeV. The dashed line represents
the 68% C.L. contour obtained by combining the Geneva–Saclay data on Ke4

decay with those from ACM(A) on δ2
0.

the narrow band of solutions shown in fig. 13.
In this figure, the energy range only extends to 0.82 GeV, for the following

reason: Our solutions move along the Argand circle only below the matching
point. At higher energies, the real part of the partial wave calculated from the
Roy equations does not exactly match the imaginary part used as an input:
unless we correct the latter, the elasticity η1

1 differs from unity, already before
the inelastic channels start making a significant contribution. If the consistency
condition is met well, the departure from unity is small, but it can become as
large as 5% if we go to the extreme of the consistency region shown in fig.9. This
means that it does not make much sense to extract the value of the phase without
adjusting the imaginary part. The proper way to do this is to extend the interval
on which the Roy equations are solved, but we did not carry this out.

In the region 0.7 GeV < 0.82 GeV, the result closely follows the data of the
CERN-Munich collaboration. Below 0.7 GeV, however, the data are in conflict
with the outcome of our analysis: The five lowest data points are outside the
range allowed by the Roy equations, a problem noted already in ref. [6]. In our
opinion, we are using a generous estimate of the uncertainties to be attached to
our input. Note, in particular, that at those energies, the driving terms barely
contribute. We conclude that the discrepancy between our result and the CERN-
Munich phase shift analysis occurring on the left wing of the ρ is likely to be
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Figure 13: P-wave phase shift. The band shows the result of our analysis,
obtained by varying the input within its uncertainties, while the data points
indicate the phase shift measured in the process πN → ππN by the CERN-
Munich collaboration. The full line represents the phase of the vector form factor
(Gounaris-Sakurai fit of ref. [64]).

attributed to an underestimate of the experimental errors. As discussed below,
the comparison with the e+e− and τ decay data corroborates this conclusion.

Concerning the resonance parameters, we first give the ranges of mass and
width that follow if, in the vicinity of the resonance, the phase shift is approxi-
mated by a Breit-Wigner formula7

e2 i δ1
1(s) =

M2
ρ + iΓρMρ − s

M2
ρ − iΓρMρ − s

, tg δ1
1(s) =

ΓρMρ

M2
ρ − s

.

In this approximation, the mass of the resonance is the real value of the energy
where the phase passes through 90◦ and the width may be determined from the
value of the slope dδ1

1/ds at resonance. The solutions contained in the band shown

7The difference between M 2
ρ ± iMρΓρ and (Mρ ± i

2 Γρ)
2 is beyond the accuracy of that

approximation. The second is obtained from the first with the substitution M 2
ρ →M2

ρ − 1
4 Γ2

ρ,
MρΓρ →MρΓρ, which increases the value of Mρ by about 4 MeV.
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in the figure correspond to the range Mρ = 774 ± 3 MeV and Γρ = 145 ± 7 MeV,
to be compared with the average values obtained by the Particle Data Group,
Mρ = 770.0 ± 0.8 MeV, Γρ = 150.7 ± 1.1 MeV [70].

The only process independent property of the resonance is the position of the
corresponding pole – the above numbers specify this position only approximately.
To determine it more accurately, we first observe that the Roy equations yield
a representation of the partial wave t11(s) on the first sheet, in terms of the
imaginary parts along the real axis. The first sheet contains both a right and
a left hand cut. We need to analytically continue the function from the upper
rim of the right hand cut into the lower half plane (second sheet). The difference
between the values obtained in this manner and those found by evaluating the
Roy representation in the lower half plane is given by the analytic continuation
of the imaginary part,

Im t11(s) =
1

σ(s)
sin2δ1

1(s) .

On the first sheet, t11(s) does not have singularities. Hence a pole can only
arise from the continuation of the imaginary part. Indeed, the function sin2δ1

1(s)
contains the term exp 2 i δ1

1(s), which has a pole below the real axis. The position
is readily worked out with the explicit, algebraic parametrization of the phase
that we are using. The result illustrates an observation made long ago [71, 72, 73]:
The pole mass is lower than the energy at which the phase goes through 90◦, by
about 10 MeV: For the band shown in the figure, the pole position varies in the
range

Mρ = 762.5 ± 2 MeV , Γρ = 142 ± 7 MeV .

The e+e− and τ data neatly confirm the conclusion reached above: The phase
of the form factor is in perfect agreement with the behaviour of the P -wave that
follows from the Roy equations, but differs from the data of the CERN-Munich
phase shift analysis, particularly below 0.7 GeV. In our opinion, the information
obtained about the behaviour on the left wing of the resonance on the basis of the
reactions e+e− → π+π− and τ → π−π0ν is more reliable than the one obtained
from πN → ππN . The fact that the Roy equations are in good agreement with
the e+e− and τ data is very encouraging.

In view of the clean determination of the P -wave phase shift through e+e−

and τ experiments, we find it instructive to draw fixed χ2-contours in the (a0
0, a

2
0)

plane. To do so, we first need to attach an error bar to the curve representing
the phase shift. In section 7.4, we estimated the uncertainty in δ1

1(s0) at ±2◦ or
±2%. As we go down in energy, the relative precision of the determination of
the phase decreases: A generous estimate of the uncertainty at

√
s = 0.5 GeV is

10% or ±0.6◦. A smooth interpolation between these two values is our estimate
of the experimental error bar (below that energy, the e+e− and τ data become
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Figure 14: 68% C.L. contour obtained by combining all relevant low energy
data: Ke4 decay, ACM(A) data on δ2

0 below 0.8 GeV and results for δ1
1 extracted

from the e+e− and τ data on the pion form factor.

scarce and have sizeable uncertainties). To construct the χ2 we have compared
our solutions to the experimentally determined phase shift at five points between
0.5 and 0.75 GeV. Combining this χ2 with those from the data on Ke4 decays
and on δ2

0 below 0.8 GeV, we obtain the 68% C.L. area drawn in fig. 14. The
minimum of the χ2 is now 5.4 (with 13 d.o.f.). The position of the minimum is
barely shifted: It now occurs at a0

0 = 0.240, a2
0 = −0.0356. In other words, at the

place where the χ2 of the Ke4 data on δ0
0 − δ1

1 and those on δ2
0 had a minimum,

the χ2 relative to the data on the form factor is practically zero and also has a
minimum. In view of the fact that the uncertainties in δ1

1 are very small, this
is quite remarkable. The data on the P -wave do not change the position of
the minimum, but shrink the ellipse along the width of the universal band. As
expected, they do not reduce the range of allowed values of a0

0.

12.3 Data on the I = 0 S-wave below 0.8 GeV

In fig. 15 we compare the S-wave obtained from our Roy equation solutions with
the available data: CERN-Munich [47] and Berkeley [48]. The band shown is a
representation of the uncertainties in the solution, which have two main sources:
the uncertainty in δ0

0(s0) and the one in δ2
0(s0) (width of the universal band).

The central curve shows our reference solution a0
0 = 0.225, a2

0 = −0.0371. The
uncertainties indicated do not account for the changes occurring if the value
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Figure 15: Comparison between the Roy solution for the S-wave and the phase
shift analyses of the CERN-Munich (circles) and Berkeley (squares) collabora-
tions. The band shows the uncertainties in the Roy solution, which are dominated
by those in a0

0 and a2
0.

a0
0 = 0.225 is modified. Changing this value within reasonable bounds, however,

brings the solution out of the band only below 0.4 GeV, already far below the
first data point. The figure shows good agreement with the data, especially so
for the Berkeley data set. The CERN-Munich data set shows a certain structure,
which does not occur in our solutions – in view of the uncertainties in the data,
this difference does not represent a problem.

Despite the positive picture which emerges from the comparison, we refrain
from using these data to draw confidence–level contours in the (a0

0, a
2
0) plane.

The S-wave phase shifts have been extracted simultaneously with the P -wave.
As discussed in the preceding section, these are affected by systematic errors
which are at least as large as the statistical ones. The same must be true for
the data in the I = 0 channel, so that a quantitative comparison with the Roy
solutions is barely significant.

12.4 Data above 0.8 GeV

The Roy equations are valid up to
√
s1 = 1.15 GeV. In fig. 16, we show three

different solutions for the I = 0 and I = 1 partial waves, in the region above
the matching point. They are obtained by using three different inputs for the
imaginary parts (note that the curves represent our solutions, not the real parts
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Figure 16: Behaviour of the solutions above the matching point. The curves
show the solutions obtained with three different inputs for the imaginary parts.
The data points are taken from the energy independent analysis of the CERN-
Munich data [47]. The I = 0 S-wave is shown in black, the I = 1 P -wave in
blue.

of the input). The figure shows that the differences are substantial, especially in
the S-wave, despite the fact that, below

√
s0 = 0.8 GeV, the three solutions are

practically identical, for all three waves. Evidently, above the matching point,
the Roy solutions are very sensitive to the input used for the imaginary parts.

It is not difficult to understand why that is so. As discussed in detail in section
10, the solutions follow the real parts of the representation that is used as input
(see fig. 6 for the case of Au et al. – in the other two cases, the picture is similar).
The real parts of the three representations differ considerably. Moreover, all of
these are systematically lower than the “data points” in fig. 16, which show the
result of an energy independent analysis of the CERN-Munich data [47]. In view
of this, it is not surprising that the three Roy solutions are quite different and
that they are also systematically lower than the data points.

We conclude that a comparison of the Roy solutions with the data in the region
above the matching point does not yield reliable information about the values of
the two S-wave scattering lengths and we do therefore not show confidence–level
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contours relative to data above 0.8 GeV.

13 Allowed range for a0
0 and a2

0

The above discussion has made clear that we can rely only on two rather solid
sources of experimental information to determine the two S-wave scattering
lengths: the data on Ke4 and those on the P -wave in the ρ region. The for-
mer determine a range of allowed values for a0

0 while the latter yield a range for
the combination 2a0

0 − 5a2
0. The consistency condition and the Olsson sum rule

impose further constraints. Figure 17 summarizes our findings: We have super-
imposed the ellipse of fig. 14 with the lines that delimit the consistency bands for
the two S-waves, as well as those relevant for the Olsson sum rule. The allowed
range for a0

0 and a2
0 is the intersection of the ellipse with the band where the Ols-

son sum rule is obeyed within the estimated errors. In that region, the solutions
also satisfy the consistency condition.

0.15 0.2 0.25 0.3

a
0
0

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

a 02

Figure 17: Intersection of the ellipse in fig. 14 (68% C.L. relative to the data
on Ke4 decay, on δ2

0 and on the form factor) with the bands allowed by the
consistency condition in all the three channels and by the Olsson sum rule.

We find it quite remarkable that the data on the shape of the ρ resonance, the
consistency condition and the Olsson sum rule all show a preference for the lower
part of the universal band. This gives us confidence that our conclusion on which
region in the (a0

0, a
2
0) plane is allowed by the present experimental information is
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rather solid. Once the new data on Ke4 decays will become available, the allowed
range in a0

0 will become much narrower, and we will have a very small ellipse. The
prospects of making a real precision test of the predictions for the two S-wave
scattering lengths in the near future, appear to be very good, in particular also
in view of the pionium experiment under way at CERN [29].

The πN → ππN data do provide essential information concerning the input
of our calculations, but, as discussed in sections 12.3 and 12.4, they do not impose
a firm constraint on the scattering lengths (incidentally, these data also prefer
the lower half of the universal band). This is unfortunate, because the power of
the Roy equations (unitarity, crossing symmetry and analyticity) is that of con-
necting regions of very different energy scales. The behaviour of the two S-waves
in the immediate vicinity of threshold is determined by the scattering lengths. In
the combination 2a0

0−5a2
0, these also determine the linear growth of the subtrac-

tion polynomial: As we discussed in detail in section 10, the large contribution
from the polynomial must be compensated to a high degree of accuracy by the
dispersive integrals. We therefore expect that a reanalysis of the πN → ππN
data based on the Roy equations would lead to a rather stringent constraint on
the allowed region, as it would make full use of the information contained in these
data – in our opinion, the existing phase shift analyses are a comparatively poor
substitute.

14 Threshold parameters

14.1 S- and P -waves

As shown in ref. [74], the effective ranges of the S- and P -waves and the P -
wave scattering length can be expressed in the form of sum rules, involving inte-
grals over the imaginary parts of the scattering amplitude and the combination
2a0

0 − 5a2
0 of S-wave scattering lengths. The sum rules may be derived from the

Roy representation by expanding the r.h.s. of eq. (5.1) in q2 and reading off the
coefficients according to eq. (2.3). In the case of the S-wave effective ranges, the
expansion can be interchanged with the integration over the imaginary parts only
after removing the threshold singularity. This can be done by supplementing the
integrand with a term proportional to the derivative

d

ds

1√
s(s− 4M2

π )
= − h(s)

{s(s− 4M2
π )}2

, h(s) = (s− 2M2
π )
√
s(s− 4M2

π) .

In this notation, the sum rules may be written in the form:

b0
0 =

1

3M2
π

(2a0
0 − 5a2

0) +
16

3π

∫ s2

4M2
π

ds

{s(s− 4M2
π )}2

{
4M2

π (s−M2
π ) Im t00(s)

− 9M2
π(s− 4M2

π ) Im t11(s) + 5M2
π (s− 4M2

π ) Im t20(s)− 3
2
(a0

0)2 h(s)
}
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− 8

π

∫ ∞

s2

ds

{s(s− 4M2
π )}2

(a0
0)

2 h(s) + b0
0d , (14.1)

b2
0 =− 1

6M2
π

(2a0
0 − 5a2

0) +
8

3π

∫ s2

4M2
π

ds

{s(s− 4M2
π)}2

{
2M2

π(s− 4M2
π ) Im t00(s)

+ 9M2
π (s− 4M2

π ) Im t11(s) + M2
π(7s − 4M2

π) Im t20(s)− 3(a2
0)2 h(s)

}

− 8

π

∫ ∞

s2

ds

{s(s− 4M2
π )}2

(a2
0)

2 h(s) + b2
0d ,

a1
1 =

1

18M2
π

(2a0
0 − 5a2

0) +
8M2

π

9π

∫ s2

4M2
π

ds

{s(s− 4M2
π )}2

{
−2(s− 4M2

π ) Im t00(s)

+ 9(3s − 4M2
π) Im t11(s) + 5(s− 4M2

π) Im t20(s)
}

+ a1
1d ,

b1
1 =

8

9π

∫ s2

4M2
π

ds

{s(s− 4M2
π)}3

{
−2(s− 4M2

π)3 Im t00(s) + 9
(
3 s3 − 12 s2M2

π

+ 48 sM4
π − 64M6

π

)
Im t11(s) + 5(s − 4M2

π)3 Im t20(s)
}

+ b1
1d .

The integrals only involve the imaginary parts of the S- and P -waves and are
cut off at s = s2. The contributions from higher energies, as well as those from
the imaginary parts of the partial waves with ` = 2, 3, . . . are contained in the
constants b0

0d, b
2
0d, a

1
1d, b

1
1d. By construction, these represent derivatives of the

driving terms at threshold,

d0
0(s) = q2b0

0d +O(q4) , d1
1(s) = q2a1

1d + q4b1
1d +O(q6) , d2

0(s) = q2b2
0 d +O(q4) .

The numerical values obtained within our framework are given in the upper
half of table 4, where we also show the numbers quoted in the compilation of
Nagels et al. [75], which are based on the analysis of Basdevant, Froggatt and
Petersen [6]. In accordance with the literature, we use pion mass units. Since
the relevant physical scale is of the order of 1 GeV, the numerical values rapidly
decrease with the dimension of the quantity listed. The columns A – E indicate
the following contributions to the total8:

A. Contribution from the subtraction term ∝ 2a2
0 − 5a2

0.

B. Imaginary parts of the S- and P -waves on the interval 4M 2
π < s < s0. This

contribution is evaluated with the Roy solutions described in the text.

C. Imaginary parts of the S- and P -waves in the range s0 < s < s2. Here, we
are relying on the experimental information, discussed in section 7.

D. Imaginary parts of the higher partial waves in the range 4M 2
π < s < s2.

These are calculated in the same manner as for the driving terms of the S-
and P -waves (see appendix B.3).

8The numbers given for the total include the tiny additional contributions to b0
0 and b20 that

arise from the integrals over h(s)(a0
0)2 and h(s)(a2

0)2 in the interval s2 < s <∞. Numerically,
these amount to δb00 = −6.3·10−4M−2

π and δb20 = −1.7·10−5M−2
π .
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A B C D E total ∆1 ∆2 ref.[75] units

b0
0 2.12 .45 −.03 .02 .00 2.56 ±.02 +.28

−.12 2.5± 0.3 10−1M−2
π

b2
0 −1.06 .26 .02 .01 .00 −.77 ±.003 +.03

−.07 −.82± .08 10−1M−2
π

a1
1 3.53 −.03 .13 −.01 .01 3.63 ±.02 +.29

−.11 3.8± 0.2 10−2M−2
π

b1
1 4.05 1.39 −.07 .08 5.45 ±.13 +.35

−.44 10−3M−4
π

a0
2 1.29 .28 .07 .03 1.67 ±.01 +.15

−.06 1.7± .3 10−3M−4
π

b0
2 −3.48 −.04 .25 .02 −3.25 ±.07 +.34

−.87 10−4M−6
π

a2
2 1.67 −.51 .35 .02 1.53 ±.07 +1.1

−.45 1.3± 3 10−4M−4
π

b2
2 −3.10 −.09 .06 .02 −3.11 ±.07 +.41

−.95 10−4M−6
π

a1
3 5.11 .26 .05 .01 5.43 ±.1 +1.6

−.72 6± 2 10−5M−6
π

b1
3 −3.96 −.01 .01 .01 −3.95 ±.08 +.89

−1.9 10−5M−8
π

Table 4: Threshold parameters of the S-, P -, D- and F -waves. The significance
of the entries in columns A–E is specified in the text. The column ∆1 indicates
the uncertainty due to the error bars in the experimental input at and above 0.8
GeV, whereas ∆2 shows the shifts occurring if a0

0 and a2
0 are varied within the

ellipse of fig. 14, according to eqs. (14.2) and (14.4).

E. Asymptotic contributions, s > s2. These are evaluated with the representa-
tion given in appendix B.4.

For the reasons discussed earlier, we use
√
s0 = 0.8 GeV,

√
s2 = 2 GeV. The

values quoted in columns A and B are obtained with our reference solution,
a0

0 = 0.225, a2
0 = −0.0371, which corresponds to the point S0 in fig. 7.

The table shows that the result for b0
0, b

2
0, a

1
1, b1

1 is dominated by the contri-
butions from the subtraction term and from the imaginary parts of the S- and
P -waves. The higher partial waves and the asymptotic region only yield tiny
corrections. The sum D+E represents the contribution from the driving terms.
In the evaluation of these terms, which is discussed in detail in appendix B.5, we
have constrained the polynomial fit with the relevant derivatives at threshold, so
that the numerical values of the four constants b0

0d, b
2
0d, a

1
1d, b

1
1d are correctly

reproduced by the corresponding terms in the representation (4.1).
The uncertainty given in column ∆1 of table 4 only accounts for the noise

seen in our evaluation for the specific values a0
0 = 0.225, a2

0 = −0.0371 (errors in
columns B–E added up quadratically). The sensitivity to these two parameters
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is well represented by linear relations of the form9

b0
0 = 2.56× 10−1M−2

π {1 + 3.2 ∆a0
0−12.7∆a2

0 } ,
b0

2 =−0.77× 10−1M−2
π {1 + 2.5 ∆a0

0 − 7.6 ∆a2
0 } ,

a1
1 = 3.63× 10−2M−2

π {1 + 2.3 ∆a0
0 − 7.8 ∆a2

0 } ,
b1

1 = 5.45× 10−3M−4
π {1 + 0.1 ∆a0

0 − 5.7 ∆a2
0 } ,

(14.2)

with ∆a0
0 = a0

0 − 0.225, ∆a2
0 = a2

0 + 0.0371. Using this representation, the 1σ
ellipse of fig. 14 can be translated into 1σ ranges for the various quantities listed
in the table – these are shown in column ∆2 (since our reference point is not at
the center of the ellipse, the ranges are asymmetric).

The table neatly demonstrates that the two S-wave scattering lengths are
the essential low energy parameters – the uncertainty in the result is due almost
exclusively to the one in a0

0, a
2
0. This is to be expected on general grounds [76]:

The integrals occurring in the above sum rules are rapidly convergent, so that
only the behaviour of the partial waves in the threshold region matters. The
uncertainties in the input used for the imaginary parts above the matching point
only enter indirectly, through their effect on the S- and P -waves in the threshold
region. We did not expect, however, that the effect would be as small as indicated
in the table and add a few comments concerning this remarkable finding.

In order to document the statement that the uncertainties which we are at-
taching to the phenomenological input of our calculation (behaviour of the imagi-
nary parts above the matching point, elasticity, driving terms) only have a minute
effect on the result for the threshold parameters, we find it best to give the nu-
merical size of this effect (column ∆1 of the table). We repeat that the numbers
quoted there merely indicate the noise seen in our evaluation – we do not claim to
describe the scattering amplitude to that accuracy. Isospin breaking, for instance,
cannot be neglected at that level of precision.

The reason why the threshold parameters are insensitive to the uncertainties
of our input is the following. As discussed in detail in sections 6–9, the solutions
of the Roy equations in general exhibit a cusp at the matching point. If the
imaginary parts above 0.8 GeV and the value of a0

0 are specified, there is a solution
with physically acceptable behaviour in the vicinity of the matching point only if
the parameter a2

0 is chosen properly. In other words, there is a strong correlation
between the behaviour of the imaginary parts and the parameters a0

0, a2
0. As we

are selecting a specific value for these parameters, we are in effect subjecting the
imaginary parts to a constraint. For this reason, the uncertainties in the input
can barely be seen in the output for the threshold parameters – the main effect
is hidden in a0

0, a2
0. The correlation just described originates in the fact that one

9For 0.15 ≤ a0
0 ≤ 0.30 the representation holds inside the universal band to better than 4%.

Similar relations also follow directly from the representation of the S- and P -waves given in
appendix D, but since the threshold region does not carry particular weight when solving the
Roy equations, these do not have the same accuracy.
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of the two subtraction constants is superfluous: The combination 2 a0
0− 5 a2

0 may
be represented as a convergent dispersion integral over the imaginary part of the
amplitude.

The correlation is illustrated by the lines in fig. 7, which correspond to the
specific parametrization of the input used for the imaginary part of the I = 2
S-wave shown in fig. 5. As there is very little experimental information about
the energy dependence of this partial wave, we have worked out the change in
the Roy solutions that occurs if this energy dependence is modified above the
matching point. The result for the threshold parameters turns out to be practi-
cally unaffected. Also, we have varied the driving terms within the uncertainties
given in section 4. Again, the response in the threshold parameters can barely
be seen.

14.2 D- and F -waves

Similar sum rules also hold for the threshold parameters of the higher partial
waves. The contributions from the imaginary parts of the S- and P -waves are
obtained by expanding the kernels occurring in the Roy equations for the D- and
F -waves around threshold. We write the result in the form

a0
2 =

16

45π

∫ s2

4M2
π

ds

s3 (s− 4M2
π )

{
(s− 4M2

π) Im t00(s) + 9(s + 4M2
π) Im t11(s)

+ 5(s− 4M2
π ) Im t20(s)

}
+ a0

2d ,

b0
2 =− 32

15π

∫ s2

4M2
π

ds

s4 (s− 4M2
π )

{
(s− 4M2

π) Im t00(s)− 3(s − 12M2
π ) Im t11(s)

+ 5(s− 4M2
π ) Im t20(s)

}
+ b0

2d ,

a2
2 =

8

45π

∫ s2

4M2
π

ds

s3 (s− 4M2
π )

{
2(s− 4M2

π ) Im t00(s)− 9(s + 4M2
π) Im t11(s)

+ (s− 4M2
π) Im t20(s)

}
+ a2

2d , (14.3)

b2
2 =− 16

15π

∫ s2

4M2
π

ds

s4 (s− 4M2
π )

{
2(s− 4M2

π ) Im t00(s) + 3(s− 12M2
π ) Im t11(s)

+ (s− 4M2
π) Im t20(s)

}
+ b2

2d ,

a1
3 =

16

105π

∫ s2

4M2
π

ds

s4 (s− 4M2
π )

{
2(s − 4M2

π ) Im t00(s) + 9(s+ 4M2
π ) Im t11(s)

− 5(s− 4M2
π ) Im t20(s)

}
+ a1

3 d ,

b1
3 =− 128

105π

∫ s2

4M2
π

ds

s5 (s− 4M2
π)

{
2(s − 4M2

π ) Im t00(s) + 36M2
π Im t11(s)

− 5(s− 4M2
π ) Im t20(s)

}
+ b1

3 d ,

50



where a0
2d, b

0
2d, . . . contain the contributions from s > s2 as well as those from

the higher partial waves. The evaluation of these contributions, however, meets
with problems that we need to discuss in some detail.

First, we note that the definition of the driving terms in eq. (3.2) is suitable
only for the analysis of the S- and P -waves. For ` ≥ 2, the functions dI` (s) contain
a branch cut at threshold, so that these quantities are complex. In order to solve
the Roy equations for the D-waves, for instance, the contributions generated by
their imaginary parts need to be isolated, using a different decomposition of the
right hand side of these equations. As far as the scattering lengths and effective
ranges are concerned, however, only the values of the functions dI` (s) and their
first derivatives at threshold are needed, which are real.

A more subtle problem arises from the fact that the explicit form of the
kernels occurring in the Roy equations for the higher partial waves depends on
the choice of the partial wave projection. As discussed in detail in ref. [77], the
definition (A.4) – which we used in our analysis of the S- and P -waves – does not
automatically ensure that the threshold behaviour of the partial waves with ` ≥ 3
starts with the power q2`. The problem arises from the fact that the solution of
the Roy equations leads to a crossing symmetric scattering amplitude only if the
imaginary parts of the higher partial waves satisfy sum rules such as the one in
eq. (B.8). In particular, the expansion of the F–wave in powers of q in general
starts with

Re t13(s) = x1
3 q

4 + a1
3 q

6 + b1
3 q

8 + . . .

For the fictitious term x1
3 to be absent, the imaginary parts of the higher partial

waves must obey a sum rule. In fact, we have written down the relevant sum
rule already: equation (B.8). The derivation given in section B.2 shows that this
constraint ensures crossing symmetry of the terms occurring in the expansion of
the scattering amplitude around threshold, up to and including contributions of
O(q4). The threshold expansion of the partial waves with ` ≥ 3 thus only starts
at O(q6) if this condition holds – in particular x1

3 then vanishes. The sum rule
that allows us to pin down the asymptotic contributions to the driving terms
for the S- and P -waves thus at the same time also ensures the proper threshold
behaviour of the F–waves. The absence of a term of O(q6) in the G-waves leads
to a new constraint, which could be derived in the same manner, etc. Note that
the contributions from the imaginary parts of the S- and P -waves are manifestly
crossing symmetric – the constraints imposed by crossing symmetry exclusively
concern the higher waves10.

The F -wave scattering length occurs in the expansion of the amplitude around
threshold among the contributions of O(q6), two powers of q beyond the term just

10The family of sum rules discussed in appendix C.1 does not follow from crossing symmetry,
but from an asymptotic condition that goes beyond the Roy equations. As shown there, those
sum rules do tie the imaginary part of the P -wave to the higher partial waves.
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discussed. In the numerical analysis, we thus need to make sure that the sum rule
holds to high precision if we are to get a reliable value in this manner. For the
effective range, the situation is even worse. This indicates that for the numerical
analysis of the higher partial waves, the extension of the range of validity of the
Roy equations achieved if the standard partial wave projection (A.2) is replaced
by (A.3) generates considerable complications.

For the evaluation of the threshold parameters, this extension is not needed
– we may use the partial wave projection (A.2), for which the problem discussed
above does not occur. In particular, x1

3 then automatically vanishes, so that the
evaluation of the scattering lengths and effective ranges does not pose special
numerical problems. To evaluate those from the asymptotic region, we expand
the fixed-t dispersion relation (2.4) in powers of t. The results obtained for
a0

0 = 0.225, a2
0 = −0.0371 are listed in the lower half of table 4.

The dependence on the S-wave scattering lengths may again be represented
(to better than 6% inside the universal band for 0.15 ≤ a0

0 ≤ 0.30) with a set of
linear relations:

a0
2 = 1.67 × 10−3M−4

π {1 + 2.6 ∆a0
0−8.6 ∆a2

0 } ,
b0

2 =−3.25 × 10−4M−6
π {1 + 6.6 ∆a0

0 −17 ∆a2
0 } ,

a2
2 = 1.53 × 10−4M−4

π {1 + 14 ∆a0
0 −25 ∆a2

0 } ,
b2

2 =−3.11 × 10−4M−6
π {1 + 6.2 ∆a0

0 −11 ∆a2
0 } ,

a1
3 = 5.43 × 10−5M−6

π {1 + 5.5 ∆a0
0 − 8 ∆a2

0 } ,
b1

3 =−3.95 × 10−5M−8
π {1 + 8 ∆a0

0 − 8 ∆a2
0 } .

(14.4)

The sensitivity is more pronounced here than in the case of the threshold pa-
rameters for the S- and P -waves. In particular, the linear representation for the
D-wave scattering length a2

2 only holds to a good approximation if a0
0 and a2

0 do
not deviate too much from the central values.

15 Values of the phase shifts at s = M 2
K

A class of important physical processes where the ππ phase shifts play a relevant
role is that of kaon decays. Let us recall, for instance, that the phase of ε′ is
given by the value of δ2

0 − δ0
0 + 1

2
π at s = M2

K. In this section, we give numerical
values for the three phase shifts at the kaon mass as they come out from our Roy
equation analysis, and show the explicit dependence on the two S-wave scattering
lengths. In this manner, an improved determination of the latter will immediately
translate into a better knowledge of the phases at s = M 2

K.
The decays K0 → ππ and K+ → ππ concern slightly different values of the

energy. In view of the fact that the CP-violating parameter ε′ manifests itself in
the decays of the neutral kaons, we evaluate the phases at s = M 2

K0 . Note that,
in addition to this difference in the masses, there are also isospin breaking effects
in the relevant transition matrix elements. As far as the ππ phases are concerned,

52



Value at
s = M2

K0

∆1 ∆2

δ0
0 37.3 ±1.4 +4.3

−1.6

δ1
1 5.5 ±0.1 +.3

−.13

δ2
0 −7.8 ±0.04 +.7

−.8
δ0

0 − δ2
0 45.2 ±1.3 +4.5

−1.6

Table 5: Values of the phase shifts at s = M 2
K0 in degrees. The central value is

obtained with our reference solution of the Roy equations, where a0
0 = 0.225, a2

0 =
−0.0371. The column ∆1 indicates the uncertainty due to the error bars in the
experimental input at and above 0.8 GeV, whereas ∆2 shows the shifts occurring
if a0

0 and a2
0 are varied within the ellipse of fig. 14, according to eq. (15.1).

however, the isospin breaking effects due to md −mu are tiny, because G-parity
implies that these only occur at order (md −mu)

2.
As in the preceding section, we give values at the reference point a0

0 = 0.225
and a2

0 = −0.0371, and break down the errors into those due to the noise in
our calculations and those due to the poorly known values of the two scattering
lengths. The results are shown in table 5. Like for the threshold parameters, the
two S-wave scattering lengths are the main source of uncertainty. In the present
case, the errors due to the uncertainties in our experimental input at 0.8 GeV
are not negligible, but they amount to at most 4%.

The dependence of the central values on the two scattering lengths is well
described by the following polynomials:

δ0
0(M2

K0) = 37.3◦
{
1 + 3.0∆a0

0 − 8.5∆a2
0

}
,

δ1
1(M2

K0) = 5.5◦
{

1 + 1.7∆a0
0 − 6.7∆a2

0

}
, (15.1)

δ2
0(M2

K0) =−7.8◦
{

1 + 1.9∆a0
0 − 13∆a2

0

}
,

δ0
0(M2

K0)− δ2
0(M2

K0) = 45.2◦
{
1 + 2.8∆a0

0 − 9.4∆a2
0

}
.

Our results are in agreement with refs. [60, 78, 79], but are more accurate. In
the foreseeable future, the two S-wave scattering lengths will be pinned down to
good precision, so that the above formulae will fix the phases to within remarkably
small uncertainties.

16 Comparison with earlier work

The Roy equations were used to obtain information on the ππ scattering ampli-
tudes, already in the early seventies. Most of the work done since then either
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follows the method of Pennington and Protopopescu [3, 4] or the one of Basde-
vant, Froggatt and Petersen [5, 6]. In the present section, we briefly compare
these two approaches with ours. A review of the results obtained by means of
the Roy equations is given in ref. [9].

To our knowledge, Pennington and Protopopescu [3] were the first to analyze
ππ scattering data using Roy’s equations. In principle, the approach of these
authors is similar to ours. In our language, they fixed the matching point at√
s0 = 0.48 GeV. As input data, they relied on the ππ production experiment of

the Berkeley group [48], using the data of Baton et al. [45] for the I = 2 channel
(at the time they performed the analysis, the high-energy, high-statistics CERN-
Munich data [47] were not yet available). The Roy equations then allowed them
to extrapolate the S- and P -wave phases of Protopopescu et al. [48] to the region
below 0.48 GeV. Comparing the Roy-predicted real parts with the data (this
corresponds to what we call consistency), they found that these constrain the
two S-wave scattering lengths to the range a0

0 = 0.15±0.07, a2
0 = −0.053±0.028.

In their subsequent work [4], they then used the Roy equations to solve the famous
Up-Down ambiguity that occurs in the analysis of the S-wave.

The fact that, in their analysis, the matching point is taken below the mass of
the ρ has an interesting mathematical consequence: As discussed in section 6.3,
the Roy equations do then not admit a solution for arbitrary values of a0

0, a
2
0, even

if cusps at the matching point are allowed for (the situation corresponds to row
IV of table 1). To enforce a solution, one may for instance keep the input for the
imaginary parts as it is, but tune the scattering length a2

0. The result, however,
in general contains strong cusps in the partial waves with I = 0, 1. These can
only be removed if the input used for the imaginary parts above the matching
point is also tuned – the situation is very different from the one encountered for
our choice of the matching point.

Basdevant, Froggatt and Petersen [5, 6] constructed solutions of the Roy equa-
tions by considering several phase shift analyses and a broad range of S-wave
scattering lengths. The method used by these authors is different from ours
in that they relied on an analytic parametrization of the S- and P -waves from
threshold up to

√
s2 =

√
110Mπ = 1.47 GeV, the onset of the asymptotic region

in their case. Some of the parameters occurring therein are determined from a fit
to the data, some by minimizing the difference between the right and left hand
sides of the Roy equations in the region below

√
s0 =

√
60Mπ = 1.08 GeV. In

this manner, they construct universal bands corresponding to the Berkeley [48],
Saclay [45] and CERN-Munich phases as determined by Estabrooks et al. [50].
The individual bands are not very much broader than the shaded region in fig. 17,
but they are quite different from one another: Crudely speaking, the Berkeley
band is centered at the upper border of our universal band, while the one con-
structed with the CERN-Munich phases is centered at the lower border. The
Saclay band runs outside the region where we can find acceptable solutions at
all.
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In order to compare their results with ours, we first note that, for the six
explicit solutions given in table 5 of [6], the value of a0

0 varies between −0.06 and
0.59. Only two of these correspond to values of the S-wave scattering lengths in
the region considered in the present paper: BKLY2 and SAC2. For these two,
the value of the P -wave phase shift at 0.8 GeV is 108.3◦ and 108.0◦, respectively,
remarkably close to the central value of the range allowed by the data on the
form factor, eq. (7.2). Concerning the value of δ0

0 at 0.8 GeV, however, the two
solutions differ significantly: While BKLY2 yields 79.7◦ and is thus within our
range in eq. (7.4), the value 70.2◦ that corresponds to SAC2 is significantly lower.
In our opinion, that solution is not consistent with the experimental information
available today. In the interval from threshold to 0.8 GeV, our solution differs
very little from BKLY2. Above this energy, the imaginary part of the I = 0
S-wave in BKLY2 is substantially smaller than the one we are using as an input.
Nevertheless, the solutions are very similar at low energies, because the behaviour
below the matching point is not sensitive to the input above 1 GeV.

17 Summary and conclusions

The Roy equations follow from general properties of the ππ scattering amplitude.
We have set up a framework to solve these equations numerically. In the following,
we summarize the main features of our approach and the results obtained with it,
omitting details – even if these would be necessary to make the various statements
watertight.

1. In our analysis, three energies s0 < s1 < s2 play a special role:
√
s0 = 0.8 GeV , s0 = 32.9M2

π ,√
s1 = 1.15 GeV , s1 = 68M2

π ,√
s2 = 2 GeV , s2 = 205.3M2

π .

We refer to the point s0 as the matching point: At this energy, the region where we
calculate the partial waves meets the one where we are relying on phenomenology.
The point s1 indicates the upper end of the interval on which the Roy equations
are valid, while s2 is the onset of the asymptotic region.

2. Given the strong dominance of the S- and P -waves, we solve the Roy
equations only for these, and only on the interval 4M 2

π < s < s0, that is on the
lower half of their range of validity. In that region, the contributions generated by
inelastic channels are negligibly small. There, we set η0

0(s) = η1
1(s) = η2

0(s) = 1.
In the interval from s0 to s2, we evaluate the imaginary parts with the available
experimental information, whereas above s2, we invoke a theoretical represen-
tation, based on Regge asymptotics. We demonstrate that crossing symmetry
imposes a strong constraint on the asymptotic contributions, which reduces the
corresponding uncertainties quite substantially – in most of our results, these are
barely visible.
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3. The Roy equations involve two subtraction constants, which may be iden-
tified with the two S-wave scattering lengths a0

0, a
2
0. In principle, one subtraction

would suffice: The Olsson sum rule relates the combination 2 a0
0−5 a2

0 to an inte-
gral over the imaginary parts in the forward direction (or, in view of the optical
theorem, over the total cross section). This imposes a correlation between the in-
put used for the imaginary parts and the values of the S-wave scattering lengths,
but using this constraint ab initio would lead to an unnecessary complication
of our scheme. We instead treat the two subtraction constants as independent
parameters. The consequences of the Olsson sum rule are discussed below.

4. Unitarity converts the Roy equations for the S- and P -waves into a set
of three coupled integral equations for the corresponding phase shifts: The real
part of the partial wave amplitudes is given by a sum of known contributions
(subtraction polynomial, integrals over the region s0 < s < s2 and driving terms)
and certain integrals over their imaginary parts, extending from threshold to s0.
Since unitarity relates the real and imaginary parts in a nonlinear manner, these
equations are inherently nonlinear and cannot be solved explicitly.

5. Several mathematical properties of such integral equations are known, and
are used as a test and a guide for our numerical work. In particular, the existence
and uniqueness of the solution is guaranteed only if the matching point s0 is taken
in the region between the place where the P -wave phase shift goes through 90◦

and the energy where the I = 0 S-wave does the same. As this range is quite
narrow (0.78 GeV <

√
s0 < 0.86 GeV), there is little freedom in the choice of the

matching point – we use
√
s0 = 0.8 GeV. According to table 1, the multiplicity

index of the interval 0.86 <
√
s0 < 1 GeV is equal to 1. By way of example

(
√
s0 = 0.88 GeV), we have verified that our framework indeed admits a one–

parameter family of numerical solutions if the matching point is taken in that
energy range.

6. A second consequence of the mathematical structure of the Roy equations
is that, for a given input and for a random choice of the two subtraction constants,
the solution has a cusp at s0: In the vicinity of the matching point, the solution in
general exhibits unphysical behaviour. The strength of the cusp is very sensitive
to the value of a2

0. In fact, we find that the cusp disappears in the noise of
our calculation if that value is tuned properly. Treating the imaginary parts as
known, the requirement that the solution is free of cusps at the matching point
determines the value of a2

0 as a function of a0
0. This is how the universal curve of

Martin, Morgan and Shaw manifests itself in our approach.
7. The input used for the imaginary parts above the matching point is subject

to considerable uncertainties. In our framework, the values of the S- and P -wave
phase shifts at the matching point represent the essential parameters in this
regard. In order to pin these down, we first make use of the fact that the data on
the pion form factor, obtained from the processes e+e− → π+π− and τ → π−π0ντ ,
very accurately determine the behaviour of the P -wave phase shift in the region
of the ρ -resonance, thus constraining the value of δ1

1(s0) to a remarkably narrow
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range. Next, we observe that the absolute phase of the ππ scattering amplitude
drops out in the difference δ1

1 − δ0
0, so that one of the sources of systematic

uncertainty is eliminated. Indeed, the phase shifts extracted from the reaction
πN → ππN yield remarkably coherent values for this difference. Since the P -
wave is known very accurately, this implies that δ0

0(s0) is also known rather well.
The experimental information concerning δ2

0, on the other hand, is comparatively
meagre. We vary it in the broad range shown in fig. 5.

8. The uncertainties in the experimental input for the imaginary parts and
those in the driving terms turn the universal curve into a band in the (a0

0, a
2
0)

plane, part of which is shown in fig. 7. Outside this “universal band”, the Roy
equations do not admit physically acceptable solutions that are consistent with
what is known about the behaviour of the imaginary parts above the matching
point.

9. One of the striking features of the solutions is that, above the matching
point, they very closely follow the real part of the partial wave used as input for
the imaginary part, once the value of a2

0 is in the proper range. The phenomenon
is discussed in detail in section 10, where we show that, in a certain sense, this
property represents a necessary condition for the solution to be acceptable phys-
ically. The region where this consistency condition holds is shown in fig. 9: It
roughly constrains the admissible values of a2

0 to the lower half of the universal
band.

10. As mentioned above, the Olsson sum rule relates the combination 2a0
0−5a2

0

of scattering lengths to an integral over the imaginary parts of the amplitude.
Evaluating the integral, we find that the sum rule is satisfied in the band spanned
by the two red curves shown in fig. 9. The Olsson sum rule thus amounts to
essentially the same constraint as the consistency condition. Presumably, the
universal band is of the same origin: Physically acceptable solutions only exist
if the subtraction constants are properly correlated with the imaginary parts.
The shaded region in fig. 9 shows the domain where all of these conditions are
satisfied. It is by no means built in from the start that the various requirements
can simultaneously be met – in our opinion, the fact that this is the case represents
a rather thorough check of our analysis.

11. The admissible region can be constrained further if use is made of ex-
perimental data below the matching point. At the moment there are two main
sources of information on ππ scattering below 0.8 GeV: A few data points for the
I = 2 S-wave phase shift – which to our knowledge will, unfortunately, not be
improved in the foreseeable future – and a few data points on δ0

0 − δ1
1 very close

to threshold, as measured in Ke4 decays. These data do provide an important
constraint. We compare our solutions inside the universal band to both sets of
data. As shown in fig. 12, the corresponding χ2 contours nicely fit inside the
universal band. The net result for the allowed range of the parameters is shown
in fig. 17, which summarizes our findings.

12. To our knowledge, the Roy equation analysis is the only method that
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allows one to reliably translate low energy data on the scattering amplitude into
values for the scattering lengths. As discussed above, the available data do cor-
relate the value of a2

0 with the one of a0
0. Unfortunately, however, the value of a0

0

as such is not strongly constrained: In agreement with earlier analyses, we find
that these data are consistent with any value of a0

0 in the range from 0.18 to 0.3.
13. The new experiments at Brookhaven [27] and at DAΦNE [28] will yield

more precise information in the very near future. We expect that the analysis of
the forthcoming results along the lines described in the present paper will reduce
the error in a0

0 by about a factor of three. Moreover, the pionic atom experiment
under way at CERN [29] will allow a direct measurement of |a0

0 − a2
0| and thus

confine the region to the intersection of the corresponding, approximately vertical
strip with the region shown in fig. 17.

14. The two subtraction constants a0
0, a

2
0 are the essential parameters at low

energies: If these were known, our method would allow us to calculate the S-
and P -wave phase shifts below 0.8 GeV to an amazing degree of accuracy. The
parameters a0

0, a2
0 act like a filter: If the solutions are sorted out according to

the values of these parameters, the noise due to the uncertainties in our input
practically disappears, because variations of that input require a corresponding
variation, either in a0

0 or in a2
0 – otherwise, the behaviour of the solution near

the matching point is unacceptable. A simple explicit representation for the S-
and P -wave phase shifts as functions of the energy is given in appendix D. The
representation explicitly displays the dependence on a0

0, a
2
0.

15. We have also analyzed the implications for the scattering lengths of the
P -, D- and F -waves, as well as for the various effective ranges. The fact that
a0

0 and a2
0 are the essential low energy parameters manifests itself also here: If

we change the input in the Roy equations within the uncertainties, but keep a0
0

and a2
0 constant, the values of the various threshold parameters vary only by tiny

amounts, typically around one percent or less. The main source of uncertainty in
the determination of the threshold parameters is by far the one attached to the
S-wave scattering lengths.

16. If the energy approaches the matching point, the uncertainties in the
experimental input, naturally, come more directly into play. Also, the uncertain-
ties in the driving terms grow rather rapidly with the energy. At the kaon mass,
however, these are still very small. We have analyzed the phase shifts at E = MK

in detail, because these represent an important ingredient in the calculation for
various decay modes of the K mesons. The result shows that the uncertainties
are dominated by those in a0

0, a
2
0, also at that energy. We conclude that the fu-

ture precision data on K`4 -decay and on pionic atoms will translate, via the Roy
equations, into a rather precise knowledge of the ππ scattering amplitude (not
only the lowest three partial waves) in the entire low–energy region, extending
quite far above threshold.

17. In the present paper, we followed the phenomenological path and avoided
making use of chiral symmetry, in order not to bias the data analysis with the-
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oretical prejudice. A famous low energy theorem [32] predicts the values of the
two basic low energy parameters in terms of the pion decay constant. The predic-
tion holds to leading order in an expansion in powers of the quark masses. The
corrections arising from the higher order terms in the chiral expansion are now
known to order p6 (two loops) [40]. We plan to match the chiral perturbation
theory representation of the scattering amplitude with the phenomenological one
obtained in the present paper [80]. This should lead to a very sharp prediction
for a0

0 and a2
0. The confrontation of the prediction with the forthcoming results

of the precision measurements will subject chiral perturbation theory to a crucial
test.
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A Integral kernels

Crossing symmetry, A(s, u, t) = A(s, t, u), implies that the isospin components
~T = (T 0, T 1, T 2) are subject to the constraints (u ≡ 4M 2

π − s− t)
~T (s, u) = Ctu ~T (s, t) ,

~T (t, s) = Cst ~T (s, t) ,

~T (u, t) = Csu ~T (s, t) ,

where the crossing matrices Ctu = Cut, Csu = Cus, Cst = Cts are given by

Ctu =




1 0 0

0 –1 0

0 0 1


 Csu =




1
3

–1 5
3

–1
3

1
2

5
6

1
3

1
2

1
6


 Cst =




1
3

1 5
3

1
3

1
2

–5
6

1
3

–1
2

1
6




Their products obey the relations

(Ctu)
2 = (Csu)

2 = (Cst)
2 = 1 ,

CstCtu = CtuCus = Cus Cst , Csu Cut = CtsCsu = Cut Cts .
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The quantities g2(s, t, s′), g3(s, t, s′) occurring in the fixed-t dispersion relation
(2.4) represent 3× 3 matrices built with Cst, Ctu and Csu,

g2(s, t, s′) = − t

π s′ (s′ − 4M2
π)

(uCst + sCstCtu)
(

1

s′ − t +
Csu

s′ − u0

)
,

g3(s, t, s′) = − s u

π s′(s′ − u0)

(
1

s′ − s +
Csu
s′ − u

)
, (A.1)

where u = 4M2
π − s− t and u0 = 4M2

π − t.
The straightforward partial wave projection of the amplitude reads

tI`(s) =
1

64π

∫ 1

−1
dzP`(z)T

I(s, tz) , tz = 1
2
(4M2

π − s)(1− z) . (A.2)

On account of crossing symmetry, the formula is equivalent to

tI` (s) =
1

32π

∫ 1

0
dzP`(z)T

I(s, tz) . (A.3)

As pointed out by Roy [1], the second form of the projection is preferable in the
present context, because it involves smaller values of |tz|, so that the domain of
convergence of the partial wave series for the imaginary parts on the r.h.s. of the
fixed-t dispersion relation (2.4) becomes larger: Whereas for the straightforward
projection, the large Lehmann-Martin ellipse is mapped into −4M 2

π < s < 32M2
π ,

the one in eq. (A.3) corresponds to −4M 2
π < s < 60M2

π .
The kernels KII ′

``′ (s, s
′) that occur in eq. (1.1) are different from zero only if

both I+` and I ′+`′ are even. With the partial wave projection (A.3), the explicit
expression becomes11

KII ′
``′ (s, s

′) = (2`′ + 1)
∫ 1

0
dz P`(z)K`′(s, tz, s

′)II
′
,

tz = 1
2
(4M2

π − s)(1− z) . (A.4)

The functions K`′(s, t, u)II
′

are the matrix elements of

K`′(s, t, s
′) = g2(s, t, s′) + g3(s, t, s′)P`′

(
1 +

2t

s′ − 4M2
π

)
. (A.5)

11Note that the fixed-t dispersion relation (2.4) is not manifestly crossing symmetric – for
`′ ≥ 2, the kernels do depend on the specific form used for the partial wave projection. In
particular, the kernels occurring in the Roy equations for the waves with ` ≥ 3 are proportional
to (s − 4M 2

π)` only if the projection in eq. (A.2) is used – for the one we are using here, the
proper behaviour of the solutions only results if the contributions from the imaginary parts
of the different partial waves compensate one another near threshold (see section 14.2). For a
detailed discussion of these issues we refer to [77].
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The kernels contain the usual pole at s = s′, generating the right hand cut
of the partial wave amplitudes, as well as a piece K̄II ′

``′ (s, s
′) that is analytic in

Re s > 0, but contains a logarithmic branch cut for s ≤ −(s′ − 4M2
π):

KII ′
``′ (s, s

′) =
1

π(s′ − s) δ
II ′ δ``′ + K̄II ′

``′ (s, s
′) .

To illustrate the structure of the second term, we give the explicit expression for
I = I ′ = ` = `′ = 0:

K̄00
00 (s, s′) =

2

3π (s− 4M2
π )
`n

(
s+ s′ − 4M2

π

s′

)
− 2 s+ 5 s′ − 16M2

π

3π s′ (s′ − 4M2
π )

.

We do not need to list other components – they may be generated from the above
formulae by means of standard integration routines.

B Background amplitude

B.1 Expansion of the background for small momenta

The background amplitude only contains very weak singularities at low energies.
At small values of the arguments, A(s, t, u)d thus represents a slowly varying
function of s, t, u, which is adequately approximated by a polynomial. We may,
for instance, consider the Taylor series expansion around the center of the Man-
delstam triangle: Set s0 = 4

3
M2

π , s = s0 + x, t = s0 − 1
2
(x− y), expand in powers

of x and y and truncate the series. Alternatively, we may exploit the fact that,
in view of the angular momentum barrier, the dispersion integral over the imag-
inary parts of the higher partial waves receives significant contributions only for
s′>∼ 1 GeV2. For small values of s and t, we can therefore expand the kernels
g2(s, t, s′) and g3(s, t, s′) in inverse powers of s′. The coefficients of this expansion
are homogeneous polynomials of s, t and M 2

π , which may be ordered with the
standard chiral power counting. The corresponding expansion of the Legendre
polynomial starts with

P`

(
1 +

2 t

s′ − 4M2
π

)
= 1 + `(` + 1)

t

s′
+O

(
p4
)
.

Truncating the expansion at order p6, the background amplitude becomes

~T (s, t)d = −32π
{

(t uCst + s uCsu + s tCtu) (1 + Csu) ~I0 (B.1)

+{s2 t Ctu + u2 sCsu + t2 uCst + (t2 sCtu + s2 uCsu + u2 t Cst)Csu} ~I1

+s t u (1 + Csu) ~H
}

+O(p8) .
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The coefficients ~I0 and ~I1 represent moments12 of the imaginary part at t = 0,

IIn =
1

32π2

∫ ∞

4M2
π

ds ImT I(s, 0)d
sn+2(s− 4M2

π )
. (B.2)

In view of the optical theorem, these quantities are given by integrals over the
total cross section, except that the contributions from the S- and P -waves below
s2 are to be removed. Equivalently, we may express these coefficients in terms of
the imaginary parts of the partial waves:

IIn =
∞∑

`=2

(2l + 1)

π

∫ s2

4M2
π

ds Im tI`(s)

sn+2(s− 4M2
π )

+
∞∑

`=0

(2l + 1)

π

∫ ∞

s2

ds Im tI` (s)

sn+2(s− 4M2
π)
. (B.3)

Except for a contribution proportional to I1
1 , the last term in eq. (B.1) may be

expressed in terms of the derivative of Im ~T (s, t)d with respect to t:

HI = −2 I1
1 δ

I
1 +

1

32π2

∫ ∞

4M2
π

ds

s3

∂ ImT I(s, t)d
∂t t=0

. (B.4)

Here, only the higher partial waves contribute:

HI =
∞∑

`=2

(2l + 1){`(` + 1) − 2 δI1}
1

π

∫ ∞

4M2
π

ds Im tI` (s)

s3(s− 4M2
π )

. (B.5)

The expression is similar to the one for I I1 , except that the sum over the angular
momenta picks up a factor of `(` + 1), indicating that partial waves with higher
values of ` are more significant here. Note that all of the above moments are
positive.

B.2 Constraints due to crossing symmetry

The expansion of the background amplitude starts at order p4, with a manifestly
crossing symmetric contribution determined by the moments ~I0. The term from ~I1

is also crossing symmetric, but the one proportional to s t u violates the condition
~T (s, u)d = Ctu ~T (s, t)d, unless the I = 1 component of the vector (1 + Csu) ~H
vanishes, i.e.

2H0 = 9H1 + 5H2 . (B.6)

This sum rule is both necessary and sufficient for the polynomial approxima-
tion to the background amplitude to be crossing symmetric up to and including
contributions of order p6.

12 The factor 1/(s − 4M 2
π) could also be expanded in inverse powers of s, but this would

worsen the accuracy of the polynomial representation. Note that the same factor also occurs
in the representation (3.6) for the contributions generated by the imaginary part of the S- and
P -waves below s2: The expansion of the functions W I(s) in powers of s yields integrals of the
same form. Hence the low energy expansion of the full amplitude can be expressed in terms of
moments of this type.
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The sum rule illustrates the well-known fact that crossing symmetry leads
to stringent constraints on the imaginary parts of the partial waves with ` ≥ 2
(for a thorough discussion, see [81, 42]). Crossing symmetry implies for instance
that Im t02(s) can be different from zero only if some of the higher partial waves
with I = 1 or I = 2 also possess an imaginary part – in marked contrast to the
situation for the S- and P -waves, where crossing symmetry does not constrain
the imaginary parts.

In the form given, the sum rule only holds up to corrections of order M 2
π .

We may, however, establish an exact variant by expanding the I = 1 component
of the relation ~T (s, u)d = Ctu ~T (s, t)d around threshold, for instance in powers
of t and u. In order for the term of order t u occurring in the expansion of the
left hand side to agree with the corresponding term on the right hand side, the
imaginary parts must obey the sum rule

∫ ∞

4M2
π

ds

s2 (s− 4M2
π)

{
2 Im Ṫ 0(s, 0)− 5 Im Ṫ 2(s, 0)

}
=

3
∫ ∞

4M2
π

ds (3 s − 4M2
π )

s2 (s− 4M2
π )3

{
(s− 4M2

π ) Im Ṫ 1(s, 0)− 2 ImT 1(s, 0)
}

, (B.7)

where Ṫ I(s, t) stands for the partial derivative of T I(s, t) with respect to t. Ex-
pressed in terms of the imaginary parts of the partial waves, the relation reads

∑

`=2,4, ...

(2` + 1) ` (` + 1)
∫ ∞

4M2
π

ds

s2 (s− 4M2
π )2
{2 Im t0` (s)− 5 Im t2`(s)} =

∑

`=3,5, ...

(2` + 1) {` (` + 1)− 2}
∫ ∞

4M2
π

ds (s − 4
3
M2

π)

s2 (s− 4M2
π)3

9 Im t1`(s) . (B.8)

The approximate version (B.6) differs from this exact result only through terms
of order M2

π .
The constraints imposed by crossing symmetry show, in particular, that the

concept of tensor meson dominance is subject to a limitation that does not occur
in the case of vector dominance: The hypothesis that convergent dispersion inte-
grals or sum rules are saturated by the contributions from a spin 2 resonance leads
to coherent results only at leading order of the low energy expansion. The sum
rule (B.7) demonstrates that the hypothesis in general fails: Crossing symmetry
implies that singularities with ` ≥ 2 cannot be dealt with one by one.

Since the relation (B.6) ensures crossing symmetry, the above low energy
expansion of the isospin components of the amplitude is equivalent to a manifestly
crossing symmetric representation of the background amplitude:

A(s, t, u)d = p1 + p2 s+ p3 s
2 + p4 (t− u)2 + p5 s

3 + p6 s(t− u)2 +O(p8) . (B.9)

By construction, A(s, t, u)d does not contribute to the S-wave scattering lengths.
This condition fixes p1 and p2 in terms of the remaining coefficients:

p1 = −16M4
π p4 , p2 = 4M2

π (−p3 + p4 − 4M2
π p5) , (B.10)
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The explicit expressions for the latter read

p3 =
8π

3
(4I0

0 − 9I1
0 − I2

0) +
16π

3
M2

π (−8 I0
1 − 21 I1

1 + 11 I2
1 + 12H) ,

p4 = 8π (I1
0 + I2

0) + 16πM2
π (I1

1 + I2
1 ) , (B.11)

p5 =
4π

3
(8 I0

1 + 9 I1
1 − 11 I2

1 − 6H) ,

p6 = 4π(I1
1 − 3 I2

1 + 2H) .

In view of the sum rule (B.6), only two of the components of ~H are independent.
Moreover, the amplitude only involves a combination thereof:

H ≡ 2
5
(H0 − 2H1) = 2

9
(H0 + 2H2) = H1 +H2 . (B.12)

The above formulae show that the leading background contribution is deter-
mined by the integrals ~I0, which yield

p1 = O(M4
π) , p2 = O(M2

π ) , p3 = O(1) , p4 = O(1) .

The contributions from ~I1 and ~H modify the result by corrections that are sup-
pressed by one power of M 2

π and, in addition, generate a polynomial of third
degree in s, t, u, characterized by p5 and p6.

B.3 Background generated by the higher partial waves

Next, we turn to the numerical evaluation of the integrals ~I0, ~I1, ~H and first
consider the contributions from the imaginary parts of the partial waves with
` ≥ 2 in the region below 2 GeV. The integrals are dominated by the resonances,
which generate peaks in the imaginary parts. In the vicinity of the peak, we may
describe the phase shift with the Breit-Wigner formula

e2iδ(s) =
M2

r + iΓrMr − s
M2

r − iΓrMr − s
,

where Mr and Γr denote the mass and the width of the resonance, respectively.
To account for inelasticity (decays into states other than ππ), we multiply the
corresponding expression for the imaginary part of the partial wave amplitude
with the branching fraction Γr→ππ/Γr. This leads to

Im tIr`r (s) =

√
s

s− 4M2
π

Γr→ππΓrM
2
r

(s−M2
r )2 + Γ2

rM
2
r

,

where Ir and `r denote the isospin and the spin of the resonance, respectively. In
the narrow width approximation, the formula simplifies to

Im tIr`r (s) = π Γr→ππMr(1− 4M2
π/M

2
r )−

1
2 δ(s−M2

r ) . (B.13)
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Only four of the states listed in the particle data booklet [70] below 2 GeV
have spin ` ≥ 2 and carry the proper quantum numbers to be produced in ππ
collisions: The spin 2 resonances f2(1275) and f ′2(1525), the spin 3 state ρ3(1681)
and the state fJ(1710), whose spin is not firmly established, but must be even.
There is no evidence for exotic states: f2, f

′
2 and fJ are isoscalars, while the ρ3 is

an isovector.
Very likely, the lightest spin 4 state is the f4(2044): A linear ρ(770) −

f2(1275) − ρ3(1691) Regge trajectory calls for a spin 4 recurrence almost ex-
actly there. At any rate, if the spin of the state fJ (1710) were equal to 4 or
even larger, it would sit above that trajectory and thus upset the standard Regge
picture, which we will be making use of to estimate the asymptotic part of the
driving terms. We take it for granted that J = 0 or 2 and conclude that only the
I = 0 D-wave and the F -wave contain resonances below 2 GeV. In the follow-
ing, we discuss the contributions generated by these states, comparing the result
obtained from the narrow width formula with the one found on the basis of two
different phase shift analyses.

The most important contribution arises from the tensor meson f2(1275). In-
serting the valuesMf2 = 1275 MeV, Γf2→ππ = 157 MeV, the narrow width formula
gives I0

0f2
= .25 GeV−4, I0

1f2
= .15 GeV−6, H0

f2
= .93 GeV−6, to be compared with

the results obtained with the parametrizations of theD-wave in refs. [47] and [57],
which yield

[47] : I0
0D = .25 GeV−4 , I0

1D = .18 GeV−6 , H0
D = 1.10 GeV−6 , (B.14)

[57] : I0
0D = .27 GeV−4 , I0

1D = .19 GeV−6 , H0
D = 1.17 GeV−6 . (B.15)

These numbers show that the contributions from the imaginary part of the D-
wave are dominated by the f2(1275).

We add a few remarks concerning the detailed behaviour of Im t02(s) and first
note that the f ′2(1525) mainly decays into KK̄. In the present context, this state
may be ignored, because the corresponding ππ partial width is tiny: Γf ′2→ππ =
.62±.14 MeV. The phase shift analysis of ref. [57] does contain a second resonance
in the D-wave, which generates a small enhancement in the integrands on the
r.h.s. of eqs. (B.3), (B.5) towards the upper end of the range of integration. The
numerical result in eq. (B.15) includes the tiny contribution produced by this
enhancement, but this effect only accounts for a small fraction of the difference in
the values obtained with the two different phase shift analyses. The main reason
for that difference is that the two representations of the D-wave in refs. [47, 57]
do not agree very well on the left wing of the f2(1275). In the context of the
present paper, these details are not essential – we use the difference between the
two phase shift analysis as a measure for the uncertainties to be attached to the
moments.

To estimate the significance of the remaining partial waves with I = 0, we
consider the contribution generated by the f4(2044). This resonance also mostly
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decays into states other than ππ. The relevant partial width is Γf4→ππ = 35 ±
4MeV. The narrow width formula shows that the contribution from this state is
very small: I0

0f4
= .009 GeV−4, I0

1f4
= .002 GeV−6, H0

f4
= .04 GeV−6. Moreover,

the center of the peak is outside our range of integration – more than half of the
contribution from this level is to be booked in the asymptotic part. We conclude
that the imaginary parts of the partial waves with ` ≥ 4 only matter at energies
above 2 GeV.

The ρ3(1681) shows up as a peak in the imaginary part of the F -wave. Accord-
ing to the particle data tables [70], it mainly decays into 4π. The partial width of
interest in our context is Γρ3→ππ = 38±3 MeV. Inserting this in the narrow width
formula, we obtain I1

0ρ3
= .020 GeV−4, I1

1ρ3
= .007 GeV−6, H1

ρ3
= .07 GeV−6, to

be compared with the values found by performing the numerical integration with
the representations for the F -wave given in the two references quoted above:

[47] : I1
0F = .028 GeV−4 , I1

1F = .012 GeV−6 , H1
F = .12 GeV−6 , (B.16)

[57] : I1
0F = .030 GeV−4 , I1

1F = .016 GeV−6 , H1
F = .16 GeV−6 . (B.17)

In the present case, the narrow width formula only accounts for about half of the
result: The region below the resonance is equally important. There, the difference
between the two phase shift analyses is more pronounced than for the D-waves.
Accordingly, the uncertainties in the F -wave contributions to the moments are
larger.

The formula (B.13) predicts that the contribution generated by the imagi-
nary part of the I = 2 waves vanishes, because that channel does not contain
any resonances. According to Martin, Morgan and Shaw [82], the D-wave phase

shift may be approximated as δ2
2(s) ' −0.003 (s/4M 2

π ) (1− 4M2
π/s)

5
2 . The corre-

sponding contributions to the moments are indeed very small: I2
0 = 0.005 GeV−4,

I2
1 = 0.006 GeV−6, H = 0.04 GeV−6. In the following, we assume that these

estimates do hold to within a factor of two.
This completes our discussion of the contributions generated by the higher

partial waves in the region below 2 GeV. The net result is that these are due
almost exclusively to the D- and F -waves. The numerical results are listed in
row L of table 6. For I = 0, 1, the values given rely on the phase shift analyses
of refs. [47, 57], while the estimates for I = 2 correspond to the parametrization
of ref. [82].
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I = 0 I = 1 I = 2

I0
0 I0

1 H0 I1
0 I1

1 H1 I2
0 I2

1 H2

GeV−4 GeV−6 GeV−6 GeV−4 GeV−6 GeV−6 GeV−4 GeV−6 GeV−6

L .26 .19 1.13 .029 .014 .14 .005 .006 .04
R .03 .004 .11 .018 .003 .07 – – –
P .01 .001 .04 .010 .001 .04 .010 .001 .04

total .30 .19 1.28 .058 .018 .24 .015 .007 .08
± .01 .01 .05 .007 .002 .03 .008 .006 .04

Table 6: Moments of the background amplitude. The rows L, R and P indicate
the contributions from the region below 2 GeV, from the leading Regge trajectory
and from the Pomeron, respectively. The last two rows show the result for the
sum of these contributions and our estimate of the uncertainties, respectively.

B.4 Asymptotic contributions

We now turn to the contributions from the high energy tail of the dispersion
integrals. The asymptotic behaviour of the scattering amplitude may be analyzed
in terms of Regge poles. A trajectory with isospin I generates a contribution
∝ sα(t) to the t-channel isospin component ImT (I)(s, t), which is defined by

ImT (I)(s, t) =
∑

I ′
CII ′
st ImT I

′
(s, t) .

The asymptotic behaviour of the amplitude with It = 1 (s → ∞, t fixed) is
governed by the ρ -trajectory,

ImT (1)(s, t) = βρ(t) s
αρ(t) .

The Pomeron dominates the high energy behaviour of the It = 0 amplitude.
Together with the contribution from the f -trajectory, the Regge representation
of this component reads

ImT (0)(s, t) = 3P (s, t) + βf(t) s
αf(t) .

In the absence of exotic trajectories, the component with It = 2 rapidly tends to
zero when s becomes large. The asymptotic behaviour of the s-channel isospin
components thus takes the form

ImT 0(s, t) =P (s, t) + 1
3
βf (t) s

αf(t) + βρ(t) s
αρ(t) + (t↔ u) ,

ImT 1(s, t) =P (s, t) + 1
3
βf (t) s

αf(t) + 1
2
βρ(t) s

αρ(t) − (t↔ u) , (B.18)

ImT 2(s, t) =P (s, t) + 1
3
βf (t) s

αf(t) − 1
2
βρ(t) s

αρ(t) + (t↔ u) .

If t is kept fixed, the terms with P (s, t) and β(t) sα(t) dominate, generating a peak
in the forward direction, while the analogous structure in the backward direction
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(fixed u) is described by those with P (s, u) and β(u) sα(u). At fixed t, the crossed
terms drop off very rapidly with s, so that their contribution disappears in the
noise of the calculation and may just as well be dropped.

The Lovelace-Shapiro-Veneziano model [83, 84, 85] provides a very instructive
framework for understanding the interplay of the asymptotic contributions with
the resonance structures seen at low energies (see appendix E). In that model,
the ρ - and f -trajectories are linear and exchange degenerate,

αρ(t) = αf (t) = α0 + t α1 . (B.19)

We fix the intercept with the Adler zero, α(M 2
π) = 1

2
, and choose the slope such

that the spin 1 state on the leading trajectory occurs at the proper mass:

α1 = 1
2

(M2
ρ −M2

π )−1 , α0 = 1
2
− α1M

2
π . (B.20)

The amplitude may be represented as a sum of narrow resonance contributions.
Since the model does not contain exotic states, ImT 2(s, t) vanishes, so that the
residues βf(t) and βρ(t) are in the ratio 3:2. The explicit expression reads

βρ(t) = 2
3
βf(t) =

π λ (α1)α(t)

Γ[α(t)]
. (B.21)

Finally, we fix the overall normalization constant λ such that the width of the ρ
agrees with what is observed. This requires

λ = 96π ΓρM
2
ρ (M2

ρ − 4M2
π)−

3
2 . (B.22)

The model explicitly obeys crossing symmetry and yields a decent picture
both for the masses and widths of the resonances occurring on the leading tra-
jectory and for the qualitative properties of the Regge residues βρ(t), βf(t). The
main deficiency of the model is lack of unitarity: It does not contain a Pomeron
term, so that the total cross section tends to zero at high energies. While the
model yields quite decent values for the full widths, it does not account for the
fact that the resonances often decay into states other than ππ, particularly if
the available phase space becomes large – in the model, the branching fraction
Γr→ππ/Γr is equal to 1. Consequently, the LSV-model overestimates the magni-
tude of the Regge residues – a significant fraction thereof should be transferred
to the Pomeron term. For this reason, the model can only serve as a semi-
quantitative guide.

As discussed in section B.2, crossing symmetry strongly correlates the asymp-
totic behaviour of the partial waves with their properties at low energy. In par-
ticular, the parameters occurring in the Regge representation of the scattering
amplitude can be extracted from low energy phenomenology. For a review of
these calculations, we refer to the article by Pennington [43]. The value obtained
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for βρ(0) is smaller13 than what follows from eqs. (B.21), (B.22) by a factor of
0.6± 0.1. Also, while the formula (B.21) implies that the residue contains a zero
at t0 = 2M2

π −M2
ρ = −0.55 GeV2 because α(t) vanishes there, the calculation

of ref. [43] instead yields a zero at t0 = −0.44 ± 0.05 GeV2. This confirms the
remarks made above: The LSV-model describes the qualitative properties of the
Regge residues quite decently, but overestimates their magnitude.

In the numerical evaluation, we use the linear ρ -trajectory specified above,
αρ(t) = α(t), and fix the corresponding residue with the results of ref. [43], which
are adequately described by a modified version of the LSV-formula:

βρ(t) =
πλ1α

α(t)
1

Γ[ (t− t0)α1]
, t0 = −0.44 GeV2 , λ1 = (.78± .13)λ . (B.23)

We determine the properties of the f -trajectory with exchange degeneracy, i.e. set
αf (t) = α(t) and βf(t) = 3

2
βρ(t). For the Pomeron, we use the representation

P (s, t) = σ s e
1
2
b t . (B.24)

While the parameter b = 8 GeV−2 [43] describes the width of the diffraction
peak, the optical theorem implies that σ represents the asymptotic value of the
total ππ cross section. Evidently, the above parametrization can be adequate
only in a limited range of energies: The cross section does not tend to a constant,
but grows logarithmically. In the present context, however, the behaviour at very
high energies is an academic issue, because the integrands of the moments rapidly
fall off with s. What counts is that the above representation yields a decent
approximation for c.m. energies in the range between 2 and 3 GeV. There, the
terms generated by the ρ -f -trajectory are by no means negligible: The formula
(B.18) shows that at 2 GeV (3 GeV), these terms by themselves generate a
contribution to ImT 0(s, 0) that corresponds to a total cross section of 21 mb (14
mb) – in the energy range relevant for the moments, the Pomeron term does not
represent the dominating contribution to the total cross section. As discussed
in detail in ref. [43], crossing symmetry leads to the estimate σ = (6 ± 5) mb.
Although the error bar is large, the value is significantly smaller than what is
indicated by the rule of thumb σππtot ' 2

3
σπNtot ' 4

9
σNNtot ' 20 mb.

Indeed, the sum rule (B.6) confirms this result. The numerical values obtained
with the above representation for the contributions from the ρ -f -trajectory are
indicated in row R of table 6. If the high energy tail is omitted altogether, the
l.h.s. of the sum rule (B.6) becomes (2H0)L = 2.3 GeV−6, while the r.h.s. amounts
to (9H1 + 5H2)L = 1.5 GeV−6. Clearly, further contributions are required to
bring the sum rule into equilibrium. The Regge terms do contribute more to the

13In ref. [43], the residue is written as βρ(t) = 16
3 πγρ(t)α

αρ(t)−1
2

1 . The result obtained for the
value at t = 0 is γρ(0) = (0.6± 0.1)M−1

π , to be compared with the number γρ(0) = 0.97M−1
π

that follows from eqs. (B.19)-(B.22).
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right than to the left and reduce the discrepancy by a factor of two. Since the
Pomeron affects the various isospin components almost equally, it contributes
about 7 times more to the right than to the left. For the sum rule to be obeyed
within the uncertainties of the remaining contributions, the value of σ must be
in the range σ = (5± 3) mb.

Let us compare our representation of the background with the model used
for the asymptotic behaviour in the early literature. Assume that, above an
energy of 1.5 GeV, the imaginary parts can be described by a Pomeron term with
σtot = 20 mb and a Regge term that corresponds to the leading trajectory of the
LSV-model. The l.h.s. of the sum rule (B.6) then takes the value 2H0 = 3.3, while
the r.h.s yields 9H1 + 5H2 = 6.1 (to be compared with the value 2.6 obtained for
either one of the two sides with our representation of the background). Evidently,
the model is in conflict with crossing symmetry. In the region relevant for the
driving term integrals, the LSV-model overestimates the Regge residues by about
40% [43] and the sum rule (B.6) then implies that the value σ = 20 mb is too
large by about a factor of 4.

We repeat that our calculation has no bearing on the asymptotic behaviour
of the total cross section – we are merely observing that, unless the value of σ is
in the range 5±3 mb, the representation used for the amplitude violates crossing
symmetry. The row P indicates the contributions to the moments generated by
the Pomeron if σ is taken in the middle of this range. The net result of our
calculation is contained in the last two rows of table 6, which list the outcome
for the moments and for the error bars to be attached to these, respectively. For
the quantity H defined in eq. (B.12), we obtain

H = 0.32 ± 0.02 GeV−6 . (B.25)

B.5 Driving terms

The polynomial approximation for the background amplitude can be used to
determine the low energy behaviour of the driving terms – it suffices to evaluate
the partial wave projections of the polynomial ~T (s, t)d. The range of validity
of the resulting representation for the driving terms, however, only extends to
c.m. energies of about 0.6 GeV. For our numerical work, we need a representation
that holds for higher energies.

The approximations for the imaginary parts discussed above yield the follow-
ing representation of the driving terms:

dI` (s) = dI` (s)L + dI` (s)R + dI` (s)P ,

dI` (s)L =
2∑

I ′=0

3∑

`′=2

∫ s2

4M2
π

ds′KII ′
``′ (s, s

′) Im tI
′
`′ (s

′) ,

dI` (s)H =
1

32π

∫ 1

0
dzP`(z)T

I(s, tz)H , H = R,P
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~T (s, t)H =
∫ ∞

s2
ds′g2(s, t, s′) · Im ~T (s′, 0)H +

∫ ∞

s2
ds′g3(s, t, s′) · Im ~T (s′, t)H ,

ImT 0(s, t)R = 3
2
βρ(t) s

α(t) + 3
2
βρ(u) sα(u) ,

ImT 1(s, t)R = βρ(t) s
α(t) − βρ(u) sα(u) ,

ImT 2(s, t)R = 0 ,

ImT 0(s, t)P = ImT 2(s, t)P = P (s, t) + P (s, u) ,

ImT 1(s, t)P = P (s, t)− P (s, u) .

The result of the numerical evaluation of these integrals with the parameter values
specified above is given in eq. (4.1).

We use the difference between the results for d0
0(s)L and d1

1(s)L obtained with
the two phase shift analyses quoted above as a measure for the uncertainties in
these quantities. In the case of the I = 2 D-wave, we assume that the Martin-
Morgan-Shaw formula does describe the behaviour of the imaginary part to within
a factor of 2. For the Regge-contributions, we use the error estimate γρ(0) = (0.6±
0.1)M−1

π given in ref. [43]. Finally, the uncertainties attached to the Pomeron
term correspond to those in the value σ = 5 ± 3 mb, obtained in section B.4.
The result quoted in eq. (4.2) is obtained by adding the corresponding error bars
quadratically and fitting the outcome with a polynomial.

There is a neat and rather thorough check of the above calculation. The
driving terms represent the partial wave projections of the background amplitude.
Since that amplitude must be crossing symmetric, we may equally well calculate
the projections with the formula (A.2) instead of using (A.3) – the result should be
the same. The modification of the partial wave projection changes the form of the
kernels KII ′

``′ (s, s
′) and the contributions from the imaginary parts of the higher

partial waves below 2 GeV then change, quite substantially. The contributions
from the asymptotic region, however, are also modified. In the sum, these changes
indeed cancel out, to a remarkable degree of accuracy. This corroborates the
claim that our description of the background is approximately crossing symmetric.
Evidently, the sum rule (B.6) plays an important role here, as it correlates the
magnitude of the asymptotic contributions with those from the low energy region.

C Sum rules and asymptotic behaviour

C.1 Sum rules for the P -wave

As discussed in section 11, the Olsson sum rule ensures the correct asymptotic
behaviour of the t-channel I = 1 scattering amplitude T (1)(s, t) for s→∞, t = 0.
The requirement that this amplitude has the proper high energy behaviour also
for t < 0 implies a further constraint, which is readily derived from the fixed-t
dispersion relation (2.4). It suffices to evaluate the coefficient of the term that
grows linearly with s and to subtract the value at t = 0. The result involves the
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following integrals over the imaginary parts of the amplitude (t ≤ 0):

S(t) ≡
∫ ∞

4M2
π

ds
2 Im T̄ 0(s, t) + 3 Im T̄ 1(s, t)− 5 Im T̄ 2(s, t)

12 s (s + t− 4M2
π)

(C.1)

−
∫ ∞

4M2
π

ds
(s− 2M2

π) ImT 1(s, 0)

s (s− 4M2
π ) (s− t) (s+ t− 4M2

π )
.

The barred quantities stand for Im T̄ I(s, t) = {ImT I(s, t)− ImT I(s, 0)}/t. The
amplitude T (1)(s, t) has the proper asymptotic behaviour only if S(t) vanishes for
space-like values of t. Since the S-waves drop out, the condition amounts to a
family of sum rules that relate integrals over the imaginary part of the P -wave
to the higher partial waves. For t = 0, for instance, the sum rule may be written
in the form
∫ ∞

4M2
π

ds
Im t11(s)

s2 (s− 4M2
π )

=
∑

`=2,4, ...

(2` + 1) ` (` + 1)
∫ ∞

4M2
π

ds
2 Im t0`(s)− 5 Im t2`(s)

18 s (s − 4M2
π )2

+
∑

`=3,5, ...

(2` + 1)
∫ ∞

4M2
π

ds
{`(` + 1) s − 4 (s − 2M 2

π )} Im t1`(s)

6 s2 (s− 4M2
π)2

. (C.2)

The integrals over the individual partial waves converge more rapidly than in the
case of the Olsson sum rule, but the factor `(`+ 1) gives the higher partial waves
more weight – in fact, the contributions from the asymptotic region are even more
important here. The sum rule is of the same structure as the one that follows
from crossing symmetry, eq. (B.7), but there are two differences: The integrals
converge less rapidly by one power of s and the P -wave does not drop out.

Since the sum rule (C.2) offers a good opportunity to check the representation
used for the asymptotic region, we evaluate it explicitly with our input for the
imaginary parts. We split the integration into one from threshold to

√
s2 = 2 GeV

and one over the asymptotic region, s > s2 (compare appendix B). Denoting the
low energy part of the integral over the P -wave by

SP =
∫ s2

4M2
π

ds
Im t11(s)

s2 (s− 4M2
π)

,

we write the sum rule in the form

SP = SD + SF + Sas , (C.3)

where SD and SF stand for the analogous integrals over the D- and F -waves.
While the low energy contributions from the waves with ` ≥ 4 are neglected, their
high energy tails are accounted for in the term Sas, which collects all contributions
from the region above s2.

The form (C.2) of the sum rule is suitable to calculate the contributions from
the interval 4M2

π < s < s2. Numerically, we obtain

SP = 1.93 ± 0.08 , SD = 0.55 ± 0.03 , SF = 0.13 ± 0.01 ,
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in units of GeV−4. To evaluate the asymptotic contributions, we instead use the
form (C.1): The term Sas coincides with the expression S(0)/48π, except that
the integration now only extends over the interval s2 < s < ∞. Inserting the
representation specified in appendix B.4, we find that the bulk stems from the
leading Regge trajectory (1.12± 0.19). The Pomeron does not contribute to the
first integral on the r.h.s. of eq. (C.1), because that integral is of the same isospin
structure as the one occurring in the Olsson sum rule, but it does generate a
small negative term via the second integral (−0.02±0.01). The net result for the
asymptotic contributions,

Sas = 1.10 ± 0.19 ,

leads to SD+SF+Sas = 1.77±0.19. Within the errors, the outcome agrees with the
numerical value SP = 1.93±0.08 obtained for the l.h.s. of the sum rule (C.3). Note
that more than half of the r.h.s. stems from the asymptotic region. We conclude
that our asymptotic representation is valid within the estimated uncertainties,
also for this sum rule, which converges more slowly than the moments considered
in appendix B. Since the Olsson sum rule belongs to the same convergence class
as the one above, we feel confident that our error estimates apply also in that
case.

C.2 Asymptotic behaviour of the Roy integrals

If the imaginary parts of the partial waves with ` > 1 are discarded, the Roy
equations become a closed system for the S- and P -waves. The explicit expres-
sions for the kernels show that the dispersion integrals over the imaginary parts
of these waves grow linearly with s, like the subtraction polynomials. Except for
the contributions from the higher partial waves, the r.h.s. of the Roy equations
for the S- and P -waves thus grows in proportion to s:

Re t00 →
Σ s

12M2
π

, Re t11 →
Σ s

72M2
π

, Re t20 →−
Σ s

24M2
π

,

Σ = 2 a0
0 − 5 a2

0 −
4M2

π

π

∫ ∞

4M2
π

ds
2 Im t00(s) + 27 Im t11(s)− 5 Im t20(s)

s (s− 4M2
π)

. (C.4)

So, if the coefficient Σ vanishes, the contribution from the dispersion integrals
cancels the one from the subtraction polynomial, simultaneously for all three
partial waves [2, 82]. In fact, if the imaginary parts of the higher partial waves are
dropped and if Σ is set equal to zero, the Roy equations become identical to those
proposed by Chew and Mandelstam [68] (see ref. [2] for a detailed discussion).
The expression for Σ resembles the Olsson sum rule, where the contributions from
the S- and P -wave read

2 a0
0 − 5 a2

0 =
4M2

π

π

∫ ∞

4M2
π

ds
2 Im t00(s) + 9 Im t11(s)− 5 Im t20(s)

s (s− 4M2
π)

+ . . .
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If only the S-waves are retained, the Olsson sum rule does imply that Σ vanishes –
evidently, this sum rule is closely related to the observation that the linearly rising
contribution from the subtraction terms must cancel the one from the dispersion
integrals (section 10). As is well-known, however, the coefficient of the P -wave
term in Σ differs from the one in the Olsson sum rule. The implications of this
discrepancy for the Chew-Mandelstam framework are discussed in the references
quoted above. The family of sum rules derived in appendix C.1 points in the
same direction: The imaginary part of the P -wave is tied together with those of
the higher partial waves – setting these equal to zero leads to inconsistencies [86].

For the above asymptotic formulae to apply at E ∼ 1 GeV, two conditions
would have to be met: (a) the contributions from the higher partial waves can
be ignored at these energies and (b) the integrals over the imaginary parts of the
S- and P -waves are dominated by the contributions from low energies. Unfortu-
nately, neither of the two conditions is met. The solutions show a pronounced
structure in the region above the matching point – evidently, we are not dealing
with the asymptotic behaviour there. The numerical value of Σ is negative: The
integral in eq. (C.4) over-compensates the term 2a0

0−5a2
0. We may lay the blame

upon the contributions above the matching point – if the integral were cut off
there, Σ would approximately vanish.

The situation is quite different for the Olsson sum rule, which does not rely on
low energy approximations but represents the exact version of the condition that
must be obeyed by the two subtraction constants for the scattering amplitude
to have the proper asymptotic behaviour. In that case, the coefficient of the
P -wave is three times smaller – the region above the matching point plays an
essential role in bringing the sum rule into balance. The numerical evaluation in
section 11 shows that even those from the region above 2 GeV are significant.
The rapid growth of the driving terms indicates that the higher partial waves
become increasingly important as the energy rises – it is clear that the asymptotic
behaviour of the partial wave amplitudes cannot be studied on the basis of the
S- and P -wave contributions to the r.h.s of the Roy equations.

We conclude that, at the quantitative level, the above simple mechanism
cannot explain why, for suitable values of a0

0 and a2
0, our solutions remain within

the bounds set by unitarity. For an analysis of the behaviour above the matching
point that neither discards the higher partial waves, nor relies on low energy
dominance, we refer to sections 10 and 11.

D Explicit numerical solutions

In this appendix, we make available our explicit numerical solutions of the Roy
integral equations. We proceed as follows. For a few tens of pairs (a0

0, a
2
0) in the

universal band (see fig. 7), we have constructed the three lowest partial waves at
2Mπ ≤

√
s ≤ 0.8 GeV. As we explain in the main text, we parametrize the phase
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A0
0 B0

0 C0
0 D0

0 s0
0

z1 .2250 .2463 −.1665·10−1 −.6403·10−3 .3672·102

z2 .2250 .1985 .3283·10−2 −.4136·10−2 .1339·10
z3 .0000 .1289 .1142·10−1 −.3699·10−2 .6504
z4 .0000 .1426·10−1 .1400·10−1 −.3980·10−2 −.3211·10
z5 .0000 .8717·10−2 .1613·10−1 −.3152·10−2 −.1396·10
z6 .0000 .5058·10−1 .3000·10−1 −.7354·10−2 −.4114·10
z7 .0000 −.4266·10−2 −.4045·10−2 −.1212·10−2 −.3447·10
z8 .0000 −.4658·10−2 .2110·10−2 −.4544·10−2 −.8428·10
z9 .0000 −.5358·10−2 .1095·10−1 −.4558·10−2 −.6350·10
z10 .0000 −.2555·10−2 .4249·10−2 −.1271·10−2 −.1486·10

A1
1 B1

1 C1
1 D1

1 s1
1

z1 .3626·10−1 .1337·10−3 −.6976·10−4 .1408·10−5 .3074·102

z2 .1834·10−1 −.2336·10−2 .1965·10−3 −.1974·10−4 −.2459
z3 .1081·10−1 −.8563·10−3 .3268·10−4 −.8821·10−5 −.1733
z4 −.3195·10−2 .1678·10−3 .2173·10−4 −.6047·10−6 .6323·10−1

z5 .1670·10−3 .4147·10−4 .3267·10−5 −.1617·10−5 −.1090·10−2

z6 −.9543·10−3 .8402·10−4 .2059·10−4 −.3125·10−5 .2724·10−1

z7 .5049·10−3 −.9308·10−4 .1070·10−4 −.1257·10−5 −.7218·10−2

z8 .4595·10−4 −.2755·10−3 .5554·10−4 −.4432·10−5 .1483·10−1

z9 −.9000·10−4 −.2308·10−3 .5307·10−4 −.4415·10−5 .1813·10−1

z10 −.1198·10−4 −.6120·10−4 .1519·10−4 −.1344·10−5 .5016·10−2

A2
0 B2

0 C2
0 D2

0 s2
0

z1 −.3706·10−1 −.8553·10−1 −.7542·10−2 .1987·10−3 −.1192·102

z2 .0000 −.1236·10−1 .3466·10−1 −.2524·10−2 −.4040·102

z3 −.3706·10−1 −.6673·10−2 .2857·10−1 −.1993·10−2 −.3457·102

z4 .0000 .4901·10−2 .2674·10−2 .1506·10−2 −.9879·102

z5 .0000 .2810·10−1 .1477·10−1 .2915·10−3 −.9856·102

z6 .0000 .4010·10−1 .2458·10−1 .1325·10−2 −.2072·103

z7 .0000 −.1663·10−1 −.3030·10−1 .8759·10−3 −.1589·103

z8 .0000 −.6784·10−1 −.9512·10−1 .4713·10−2 −.5259·103

z9 .0000 −.5429·10−1 −.8744·10−1 .5313·10−2 −.5366·103

z10 .0000 −.1178·10−1 −.2535·10−1 .1730·10−2 −.1723·103

Table 7: Polynomial coefficients for Roy solutions.
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shifts δI` of the solutions in the manner proposed by Schenk [65],

tan δI` =

√

1− 4M2
π

s
q2`
{
AI
` +BI

` q
2 + CI

` q
4 +DI

` q
6
}(4M2

π − sI`
s− sI`

)
, (D.1)

Each solution of the Roy equations corresponds to a specific value of the 3 × 5
coefficients in this expansion,

AI
` = AI

` (a
0
0, a

2
0), . . . , s

I
` = sI` (a

0
0, a

2
0) .

We approximate these by a polynomial of third degree in the scattering lengths
a0

0 and a2
0. In terms of the variables

u =
a0

0

p0
− 1 , v =

a2
0

p2
− 1 , p0 = 0.225 , p2 = −0.03706 ,

the numerical representation for the coefficient B0
0 , for instance, reads

B0
0 = z1 + z2 u+ z3 v + z4 u

2 + z5 v
2 + z6 u v + z7 u

3 + z8 u
2 v + z9 u v

2 + z10 v
3 .

The 15 × 10 numbers z1, . . . , z10 for the coefficients A0
0, B

0
0, . . . , s

2
0 are displayed

in table 7, in units of M2
π .

E Lovelace-Shapiro-Veneziano model

In this appendix, we describe the model used to illustrate the basic properties
of the Regge poles occurring in the asymptotic representation of the scattering
amplitude [83, 84, 85]. In this model, the ππ scattering amplitude is taken to be
of the form

A(s, t, u)V = λ1 Φ(αs, αt) + λ1 Φ(αs, αu) + λ2 Φ(αt, αu) ,

where Φ(α, β) is closely related to the Beta-function,

Φ(α, β) =
Γ(1− α)Γ(1 − β)

Γ(1 − α− β)
.

and αs represents a linear Regge trajectory,

αs = α0 + α1s .

At fixed t, the function Φ(αs, αt) shows Regge behaviour when s tends to infinity:

Φ(αs, αt)→ (−αs)αtΓ(1 − αt) .
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At the same time, the representation (1− αt > 0)

Φ(αs, αt) = (1− αs − αt)B(1− αs, 1− αt) (E.1)

= (1− αs − αt)
{

1

1 − αs
+
∞∑

n=1

αt(αt + 1) · · · (αt + n− 1)

n! (n+ 1− αs)

}

shows that the amplitude may be expressed as a sum of narrow resonance con-
tributions, with mass

M2
n = (α1)−1(n− α0) , n = 1, 2, . . .

The coupling constants λ1, λ2 may be chosen such that the amplitude does
not contain resonances with I = 2. For this condition to be satisfied, the corre-
sponding s-channel isospin component

T 2(s, t)V = 2λ1 Φ(αt, αu) + (λ1 + λ2) (Φ(αs, αt) + Φ(αs, αu))

should be free of poles in the physical region of the s-channel. This requires

λ2 = −λ1 ≡ 1
2
λ ,

so that the amplitude takes the form

A(s, t, u)V =−1
2
λ {Φ(αs, αt) + Φ(αs, αu)− Φ(αt, αu)} ,

T 0(s, t)V =−1
2
λ {3 Φ(αs, αt) + 3 Φ(αs, αu)− Φ(αt, αu)} , (E.2)

T 1(s, t)V =−λ {Φ(αs, αt)−Φ(αs, αu)} ,

T 2(s, t)V =−λΦ(αt, αu) .

In the chiral limit, where the Mandelstam triangle shrinks to the point s =
t = u = 0, the amplitude must contain an Adler zero there. Indeed, the factor
1−αs−αt generates such a zero if α0 = 1

2
. Hence the deviation of α0 from 1

2
must

be of order M2
π , so that αs− 1

2
represents a quantity of order p2. At leading order

of the low energy expansion, the behaviour of the amplitude therefore represents
the first term in the expansion around the point αs = αt = αu = 1

2
, which in

view of Γ(1
2
) =
√
π yields

A(s, t, u)V = π λ (αs − 1
2
) +O(p4) , (E.3)

This does have the structure of the Weinberg formula, provided the intercept α0

is chosen such that αs passes through the value 1
2

at s = M2
π , i.e. [84]

α0 = 1
2
− α1M

2
π .

The lowest levels of spin 1, 2, 3, 4 indeed occur on an approximately linear
trajectory with this intercept: Fixing the value of the slope with Mρ,

α1 = 1
2

(M2
ρ −M2

π)−1 ,
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the model predicts

Mf2 = 1319 (1275) MeV, Mρ3 = 1699 (1691) MeV, Mf4 = 2008 (2044) MeV,

where the numbers in brackets are those in the data tables [70].
The representation (E.1) shows that for s > 4M 2

π , t < 0, the imaginary part
of Φ(αs, αt) consists of a sequence of δ-functions:

Im Φ(αs, αt) =−π
∞∑

n=1

Rn(αt) δ(αs − n) ,

Rn(α) =
Γ(αt + n)

Γ(n)Γ(αt)
=

1

(n− 1)!
αt (αt + 1) · · · (αt + n− 1) .

For the imaginary part of the s-channel isospin components, we thus obtain

ImT 0(s, t)V =
3λπ

2α1

∞∑

n=1

{Rn(αt) +Rn(αu)} δ(s−M2
n) ,

ImT 1(s, t)V =
λπ

α1

∞∑

n=1

{Rn(αt)−Rn(αu)} δ(s−M2
n) ,

ImT 2(s, t)V = 0 ,

with u = 4M2
π − t−M2

n.
We may then read off the imaginary parts of the partial wave amplitudes by

decomposing the polynomial Rn(α) into a Legendre series:14

Rn(αt) =
n∑

`=0

(2 ` + 1)P`

(
1 +

2 t

M2
n − 4M2

π

)
rn ` ,

Im t0`(s)V =
3λ

64α1
{1 + (−1)`}

∞∑

n=`

rn ` δ(s−M2
n) ,

Im t1`(s)V =
λ

32α1
{1− (−1)`}

∞∑

n=`

rn ` δ(s−M2
n) ,

Im t2`(s)V = 0 .

On the leading trajectory, the coefficients are

rnn =
n

2n (2n+ 1)!!
αn1 (M2

n − 4M2
π )n .

Comparison with the narrow width formula (B.13) shows that the model
predicts the width of the various levels as15

Γππn ` =
λωIrn `

32π α1M2
n

(M2
n − 4M2

π )
1
2 , (E.4)

14In the case of t00(s), the sum over n only starts at n = 1.
15 The formula reproduces the numerical results in Table I of ref. [85], if the parameter values

are adapted accordingly (α0 = 0.48, α1 = 0.9 GeV−2, Γρ = 112 MeV,Mρ = 764 MeV).
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where ωI depends on the isospin of the particle: ω0 = 3, ω1 = 2, ω2 = 0. In
particular, the result for the width of the ρ reads

Γρ =
λ

96πM2
ρ

(M2
ρ − 4M2

π )
3
2 . (E.5)

Fixing the coupling constant with the experimental value Γρ = 151.2 MeV, we
obtain λ/32π = 0.728. The formula (E.4) then predicts

Γππf2
= 130 (157) MeV , Γππρ3

= 51 (51) MeV , Γππf4
= 46 (35) MeV ,

where the numbers in brackets are again taken from the data tables [70]. This
shows that the model does yield a decent picture, not only for the masses but
also for the widths of the particles on the leading trajectory.

In addition to the levels on the leading trajectory, the model, however, also
contains plenty of daughters, with a rather strong coupling to the ππ-channel.
For the states on the first daughter trajectory, for instance, equation (E.4) yields
Γππ10 = 783 MeV, Γππ21 = 154 MeV, Γππ32 = 113 MeV, Γππ43 = 42 MeV, etc. The scalar
daughter of the ρ is particularly fat.

It is clear that an amplitude that describes all of the levels as narrow reso-
nances fails here. Unitarity implies the bound

∫ M2

4M2
π

ds Im t00(s)
√

1 − 4M2
π/s ≤M2 − 4M2

π .

This condition is violated for M < 1.3 GeV. Also, if the intercept of the leading
trajectory is fixed with the Adler condition as above, the scalar daughter of the f2

is a ghost: The formula (E.4) yields a negative decay width [85]. In this respect,
the model is deficient – as witnessed by the life of even royal families, the decency
of a mother does not ensure that her daughters behave.

The problem also shows up in the S-wave scattering lengths: Chiral symmetry
relates the coefficient of the leading term in the low energy expansion (E.3) to
the pion decay constant,

π λα1 =
1

F 2
π

. (E.6)

If the coupling constant λ is fixed such that the model yields the proper width for
the ρ, the l.h.s. of this relation exceeds the r.h.s. by a factor of 1.7. Accordingly,
the prediction of the model for a0

0 exceeds the current algebra result by about this
factor. In the vicinity of threshold, the behaviour of the amplitude is determined
by the properties of the function φ(α, β) for α ' β ' 1

2
. There, the first term in

the series (E.1) accounts for about two thirds of the sum. The spin 1 component
of this term is due to ρ -exchange, while the spin 0 part arises from the scalar
daughter of the ρ. By construction, the former does have the proper magnitude.
The S-wave scattering lengths are too large because the scalar daughter of the ρ
is too fat.

79



As was noted from the start [85], the model is not unique. To arrive at a more
realistic model, we could add extra terms that domesticate the daughters and
leave the leading trajectory and the position of the Adler zero untouched. Note,
however, that the number of states occurring in the Veneziano model corresponds
to the degrees of freedom of a string, while the spectrum of bound states in QCD
is the one of a local field theory, where the number of independent states grows
much less rapidly with the mass. Modifications of the type just mentioned can at
best provide a partial cure. In particular, these do not remove the main deficiency
of the model, lack of unitarity.
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